Rule-Based Evolutionary Online Learning Systems A Principled Approach to LCS Analysis and Design /

This book offers a comprehensive introduction to learning classifier systems (LCS) – or more generally, rule-based evolutionary online learning systems. LCSs learn interactively – much like a neural network – but with an increased adaptivity and flexibility. This book provides the necessary backgrou...

Full description

Bibliographic Details
Main Author: Butz, Martin V. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic eBook
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg, 2006.
Series:Studies in Fuzziness and Soft Computing, 191
Subjects:
Online Access:Full Text via HEAL-Link
Description
Summary:This book offers a comprehensive introduction to learning classifier systems (LCS) – or more generally, rule-based evolutionary online learning systems. LCSs learn interactively – much like a neural network – but with an increased adaptivity and flexibility. This book provides the necessary background knowledge on problem types, genetic algorithms, and reinforcement learning as well as a principled, modular analysis approach to understand, analyze, and design LCSs. The analysis is exemplarily carried through on the XCS classifier system – the currently most prominent system in LCS research. Several enhancements are introduced to XCS and evaluated. An application suite is provided including classification, reinforcement learning and data-mining problems. Reconsidering John Holland’s original vision, the book finally discusses the current potentials of LCSs for successful applications in cognitive science and related areas.
Physical Description:XXI, 259 p. online resource.
ISBN:9783540312314
ISSN:1434-9922 ;