Rule-Based Evolutionary Online Learning Systems A Principled Approach to LCS Analysis and Design /

This book offers a comprehensive introduction to learning classifier systems (LCS) – or more generally, rule-based evolutionary online learning systems. LCSs learn interactively – much like a neural network – but with an increased adaptivity and flexibility. This book provides the necessary backgrou...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Butz, Martin V. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2006.
Σειρά:Studies in Fuzziness and Soft Computing, 191
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03308nam a22005535i 4500
001 978-3-540-31231-4
003 DE-He213
005 20151204170815.0
007 cr nn 008mamaa
008 100301s2006 gw | s |||| 0|eng d
020 |a 9783540312314  |9 978-3-540-31231-4 
024 7 |a 10.1007/b104669  |2 doi 
040 |d GrThAP 
050 4 |a QA75.5-76.95 
072 7 |a UY  |2 bicssc 
072 7 |a UYA  |2 bicssc 
072 7 |a COM014000  |2 bisacsh 
072 7 |a COM031000  |2 bisacsh 
082 0 4 |a 004.0151  |2 23 
100 1 |a Butz, Martin V.  |e author. 
245 1 0 |a Rule-Based Evolutionary Online Learning Systems  |h [electronic resource] :  |b A Principled Approach to LCS Analysis and Design /  |c by Martin V. Butz. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2006. 
300 |a XXI, 259 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Fuzziness and Soft Computing,  |x 1434-9922 ;  |v 191 
505 0 |a Prerequisites -- Simple Learning Classifier Systems -- The XCS Classifier System -- How XCS Works: Ensuring Effective Evolutionary Pressures -- When XCS Works: Towards Computational Complexity -- Effective XCS Search: Building Block Processing -- XCS in Binary Classification Problems -- XCS in Multi-Valued Problems -- XCS in Reinforcement Learning Problems -- Facetwise LCS Design -- Towards Cognitive Learning Classifier Systems -- Summary and Conclusions. 
520 |a This book offers a comprehensive introduction to learning classifier systems (LCS) – or more generally, rule-based evolutionary online learning systems. LCSs learn interactively – much like a neural network – but with an increased adaptivity and flexibility. This book provides the necessary background knowledge on problem types, genetic algorithms, and reinforcement learning as well as a principled, modular analysis approach to understand, analyze, and design LCSs. The analysis is exemplarily carried through on the XCS classifier system – the currently most prominent system in LCS research. Several enhancements are introduced to XCS and evaluated. An application suite is provided including classification, reinforcement learning and data-mining problems. Reconsidering John Holland’s original vision, the book finally discusses the current potentials of LCSs for successful applications in cognitive science and related areas. 
650 0 |a Computer science. 
650 0 |a Neurosciences. 
650 0 |a Computers. 
650 0 |a Artificial intelligence. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 1 4 |a Computer Science. 
650 2 4 |a Theory of Computation. 
650 2 4 |a Appl.Mathematics/Computational Methods of Engineering. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
650 2 4 |a Neurosciences. 
650 2 4 |a Applications of Mathematics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540253792 
830 0 |a Studies in Fuzziness and Soft Computing,  |x 1434-9922 ;  |v 191 
856 4 0 |u http://dx.doi.org/10.1007/b104669  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)