Rule-Based Evolutionary Online Learning Systems A Principled Approach to LCS Analysis and Design /

This book offers a comprehensive introduction to learning classifier systems (LCS) – or more generally, rule-based evolutionary online learning systems. LCSs learn interactively – much like a neural network – but with an increased adaptivity and flexibility. This book provides the necessary backgrou...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Butz, Martin V. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2006.
Σειρά:Studies in Fuzziness and Soft Computing, 191
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • Prerequisites
  • Simple Learning Classifier Systems
  • The XCS Classifier System
  • How XCS Works: Ensuring Effective Evolutionary Pressures
  • When XCS Works: Towards Computational Complexity
  • Effective XCS Search: Building Block Processing
  • XCS in Binary Classification Problems
  • XCS in Multi-Valued Problems
  • XCS in Reinforcement Learning Problems
  • Facetwise LCS Design
  • Towards Cognitive Learning Classifier Systems
  • Summary and Conclusions.