Variational Analysis and Generalized Differentiation I Basic Theory /

Variational analysis is a fruitful area in mathematics that, on the one hand, deals with the study of optimization and equilibrium problems and, on the other hand, applies optimization, perturbation, and approximation ideas to the analysis of a broad range of problems that may not be of a variationa...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Mordukhovich, Boris S. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2006.
Σειρά:Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics, 330
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04662nam a22005775i 4500
001 978-3-540-31247-5
003 DE-He213
005 20151106091102.0
007 cr nn 008mamaa
008 100301s2006 gw | s |||| 0|eng d
020 |a 9783540312475  |9 978-3-540-31247-5 
024 7 |a 10.1007/3-540-31247-1  |2 doi 
040 |d GrThAP 
050 4 |a QA315-316 
050 4 |a QA402.3 
050 4 |a QA402.5-QA402.6 
072 7 |a PBKQ  |2 bicssc 
072 7 |a PBU  |2 bicssc 
072 7 |a MAT005000  |2 bisacsh 
072 7 |a MAT029020  |2 bisacsh 
082 0 4 |a 515.64  |2 23 
100 1 |a Mordukhovich, Boris S.  |e author. 
245 1 0 |a Variational Analysis and Generalized Differentiation I  |h [electronic resource] :  |b Basic Theory /  |c by Boris S. Mordukhovich. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2006. 
300 |a XXII, 579 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics,  |x 0072-7830 ;  |v 330 
505 0 |a Generalized Differentiation in Banach Spaces: Generalized Normals to Nonconvex Sets. Coderivatives of Set-Valued Mappings. Subdifferentials of Nonsmooth Functions -- Extremal Principle in Variational Analysis: Set Extremality and Nonconvex Separation. Extremal Principle in Asplund Spaces. Relations with Variational Principles. Representations and Characterizations in Asplund Spaces. Versions of the Extremal Principle in Banach Spaces -- Full Calculus in Asplund Spaces: Calculus Rules for Normals and Coderivatives. Subdifferential Calculus and Related Topics. SNC Calculus for Sets and Mappings -- Lipschitzian Stability and Sensivity Analysis: Neighborhood Criteria and Exact Bounds. Pointbased Characterizations. Sensitivity Analysis for Constraint Systems. Sensitivity Analysis for Variational Systems -- References -- Glossary of Notation -- Index of Statements. 
520 |a Variational analysis is a fruitful area in mathematics that, on the one hand, deals with the study of optimization and equilibrium problems and, on the other hand, applies optimization, perturbation, and approximation ideas to the analysis of a broad range of problems that may not be of a variational nature. One of the most characteristic features of modern variational analysis is the intrinsic presence of nonsmoothness, which enters naturally not only through initial data of optimization-related problems but largely via variational principles and perturbation techniques. Thus generalized differential lies at the heart of variational analysis and its applications. This monograph in two volumes contains a comprehensive and state-of-the art study of the basic concepts and principles of variational analysis and generalized differentiation in both finite-dimensional and infinite dimensional spaces and presents numerous applications to problems in the optimization, equilibria, stability and sensitivity, control theory, economics, mechanics, etc. The first of volume is mainly devoted to the basic theory of variational analysis and generalized differentiations, while the second volume contains various applications. Both volumes contain abundant bibliographies and extensive commentaries. This book will be of interest to researchers and graduate students in mathematical sciences. It may also be useful to a broad range of researchers, practitioners, and graduate students involved in the study and applications of variational methods in economics, engineering, control systems, operations research, statistics, mechanics, and other applied sciences. 
650 0 |a Mathematics. 
650 0 |a Global analysis (Mathematics). 
650 0 |a Manifolds (Mathematics). 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 0 |a Numerical analysis. 
650 0 |a Calculus of variations. 
650 1 4 |a Mathematics. 
650 2 4 |a Calculus of Variations and Optimal Control; Optimization. 
650 2 4 |a Global Analysis and Analysis on Manifolds. 
650 2 4 |a Numerical Analysis. 
650 2 4 |a Applications of Mathematics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540254379 
830 0 |a Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics,  |x 0072-7830 ;  |v 330 
856 4 0 |u http://dx.doi.org/10.1007/3-540-31247-1  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)