Wide-Gap Chalcopyrites
Chalcopyrites, in particular those with a wide band gap, are fascinating materials in terms of their technological potential in the next generation of thin-film solar cells and in terms of their basic material properties. They exhibit uniquely low defect formation energies, leading to unusual doping...
Corporate Author: | |
---|---|
Other Authors: | , |
Format: | Electronic eBook |
Language: | English |
Published: |
Berlin, Heidelberg :
Springer Berlin Heidelberg,
2006.
|
Series: | Springer Series in Materials Science,
86 |
Subjects: | |
Online Access: | Full Text via HEAL-Link |
Table of Contents:
- Cu-Chalcopyrites–Unique Materials for Thin-Film Solar Cells
- Band-Structure Lineup at I–III–VI2 Schottky Contacts and Heterostructures
- Defects and Self-Compensation in Semiconductors
- Confine Cu to Increase Cu-Chalcopyrite Solar Cell Voltage
- Photocapacitance Spectroscopy in Copper Indium Diselenide Alloys
- Recombination Mechanisms in Cu(In,Ga)(Se,S)2 Solar Cells
- Shallow Defects in the Wide Gap Chalcopyrite CuGaSe2
- Spatial Inhomogeneities of Cu(InGa)Se2 in the Mesoscopic Scale
- Electro-Optical Properties of the Microstructure in Chalcopyrite Thin Films
- Electronic Properties of Surfaces and Interfaces in Widegap Chalcopyrites
- Interfaces of Cu-Chalcopyrites
- Bandgap Variations for Large Area Cu(In,Ga)Se2 Module Production.