Biologically Inspired Algorithms for Financial Modelling

Predicting the future for financial gain is a difficult, sometimes profitable activity. The focus of this book is the application of biologically inspired algorithms (BIAs) to financial modelling. In a detailed introduction, the authors explain computer trading on financial markets and the difficult...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Brabazon, Anthony (Συγγραφέας), O’Neill, Michael (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2006.
Σειρά:Natural Computing Series,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03807nam a22006015i 4500
001 978-3-540-31307-6
003 DE-He213
005 20151204175244.0
007 cr nn 008mamaa
008 100301s2006 gw | s |||| 0|eng d
020 |a 9783540313076  |9 978-3-540-31307-6 
024 7 |a 10.1007/3-540-31307-9  |2 doi 
040 |d GrThAP 
050 4 |a QA75.5-76.95 
072 7 |a UY  |2 bicssc 
072 7 |a UYA  |2 bicssc 
072 7 |a COM014000  |2 bisacsh 
072 7 |a COM031000  |2 bisacsh 
082 0 4 |a 004.0151  |2 23 
100 1 |a Brabazon, Anthony.  |e author. 
245 1 0 |a Biologically Inspired Algorithms for Financial Modelling  |h [electronic resource] /  |c by Anthony Brabazon, Michael O’Neill. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2006. 
300 |a XV, 277 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Natural Computing Series,  |x 1619-7127 
505 0 |a Methodologies -- Neural Network Methodologies -- Evolutionary Methodologies -- Grammatical Evolution -- The Particle Swarm Model -- Ant Colony Models -- Artificial Immune Systems -- Model Development -- Model Development Process -- Technical Analysis -- Case Studies -- Overview of Case Studies -- Index Prediction Using MLPs -- Index Prediction Using a MLP-GA Hybrid -- Index Trading Using Grammatical Evolution -- Adaptive Trading Using Grammatical Evolution -- Intra-day Trading Using Grammatical Evolution -- Automatic Generation of Foreign Exchange Trading Rules -- Corporate Failure Prediction Using Grammatical Evolution -- Corporate Failure Prediction Using an Ant Model -- Bond Rating Using Grammatical Evolution -- Bond Rating Using AIS -- Wrap-up. 
520 |a Predicting the future for financial gain is a difficult, sometimes profitable activity. The focus of this book is the application of biologically inspired algorithms (BIAs) to financial modelling. In a detailed introduction, the authors explain computer trading on financial markets and the difficulties faced in financial market modelling. Then Part I provides a thorough guide to the various bioinspired methodologies – neural networks, evolutionary computing (particularly genetic algorithms and grammatical evolution), particle swarm and ant colony optimization, and immune systems. Part II brings the reader through the development of market trading systems. Finally, Part III examines real-world case studies where BIA methodologies are employed to construct trading systems in equity and foreign exchange markets, and for the prediction of corporate bond ratings and corporate failures. The book was written for those in the finance community who want to apply BIAs in financial modelling, and for computer scientists who want an introduction to this growing application domain. 
650 0 |a Computer science. 
650 0 |a Operations research. 
650 0 |a Decision making. 
650 0 |a Finance. 
650 0 |a Computers. 
650 0 |a Computer simulation. 
650 0 |a Application software. 
650 0 |a Economics, Mathematical. 
650 1 4 |a Computer Science. 
650 2 4 |a Theory of Computation. 
650 2 4 |a Finance, general. 
650 2 4 |a Simulation and Modeling. 
650 2 4 |a Quantitative Finance. 
650 2 4 |a Operation Research/Decision Theory. 
650 2 4 |a Computer Applications. 
700 1 |a O’Neill, Michael.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540262527 
830 0 |a Natural Computing Series,  |x 1619-7127 
856 4 0 |u http://dx.doi.org/10.1007/3-540-31307-9  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)