Introductory Lectures on Fluctuations of Lévy Processes with Applications

Lévy processes are the natural continuous-time analogue of random walks and form a rich class of stochastic processes around which a robust mathematical theory exists. Their mathematical significance is justified by their application in many areas of classical and modern stochastic models including...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Kyprianou, Andreas E. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2006.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03216nam a22004695i 4500
001 978-3-540-31343-4
003 DE-He213
005 20151204153839.0
007 cr nn 008mamaa
008 100301s2006 gw | s |||| 0|eng d
020 |a 9783540313434  |9 978-3-540-31343-4 
024 7 |a 10.1007/978-3-540-31343-4  |2 doi 
040 |d GrThAP 
050 4 |a QA299.6-433 
072 7 |a PBK  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
082 0 4 |a 515  |2 23 
100 1 |a Kyprianou, Andreas E.  |e author. 
245 1 0 |a Introductory Lectures on Fluctuations of Lévy Processes with Applications  |h [electronic resource] /  |c by Andreas E. Kyprianou. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2006. 
300 |a XIII, 378 p. 22 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Lévy Processes and Applications -- TheLévy–Itô Decomposition and Path Structure -- More Distributional and Path-Related Properties -- General Storage Models and Paths of Bounded Variation -- Subordinators at First Passage and Renewal Measures -- The Wiener–Hopf Factorisation -- Lévy Processes at First Passage and Insurance Risk -- Exit Problems for Spectrally Negative Processes -- Applications to Optimal Stopping Problems -- Continuous-State Branching Processes. 
520 |a Lévy processes are the natural continuous-time analogue of random walks and form a rich class of stochastic processes around which a robust mathematical theory exists. Their mathematical significance is justified by their application in many areas of classical and modern stochastic models including storage models, renewal processes, insurance risk models, optimal stopping problems, mathematical finance and continuous-state branching processes. This text book forms the basis of a graduate course on the theory and applications of Lévy processes, from the perspective of their path fluctuations. Central to the presentation are decompositions of the paths of Lévy processes in terms of their local maxima and an understanding of their short- and long-term behaviour. The book aims to be mathematically rigorous while still providing an intuitive feel for underlying principles. The results and applications often focus on the case of Lévy processes with jumps in only one direction, for which recent theoretical advances have yielded a higher degree of mathematical transparency and explicitness. Each chapter has a comprehensive set of exercises with complete solutions. 
650 0 |a Mathematics. 
650 0 |a Mathematical analysis. 
650 0 |a Analysis (Mathematics). 
650 0 |a Economics, Mathematical. 
650 0 |a Probabilities. 
650 1 4 |a Mathematics. 
650 2 4 |a Analysis. 
650 2 4 |a Probability Theory and Stochastic Processes. 
650 2 4 |a Quantitative Finance. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540313427 
856 4 0 |u http://dx.doi.org/10.1007/978-3-540-31343-4  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)