|
|
|
|
LEADER |
03298nam a22005775i 4500 |
001 |
978-3-540-31351-9 |
003 |
DE-He213 |
005 |
20151123195740.0 |
007 |
cr nn 008mamaa |
008 |
100417s2006 gw | s |||| 0|eng d |
020 |
|
|
|a 9783540313519
|9 978-3-540-31351-9
|
024 |
7 |
|
|a 10.1007/11615576
|2 doi
|
040 |
|
|
|d GrThAP
|
050 |
|
4 |
|a Q334-342
|
050 |
|
4 |
|a TJ210.2-211.495
|
072 |
|
7 |
|a UYQ
|2 bicssc
|
072 |
|
7 |
|a TJFM1
|2 bicssc
|
072 |
|
7 |
|a COM004000
|2 bisacsh
|
082 |
0 |
4 |
|a 006.3
|2 23
|
245 |
1 |
0 |
|a Constraint-Based Mining and Inductive Databases
|h [electronic resource] :
|b European Workshop on Inductive Databases and Constraint Based Mining, Hinterzarten, Germany, March 11-13, 2004, Revised Selected Papers /
|c edited by Jean-François Boulicaut, Luc De Raedt, Heikki Mannila.
|
264 |
|
1 |
|a Berlin, Heidelberg :
|b Springer Berlin Heidelberg,
|c 2006.
|
300 |
|
|
|a X, 404 p.
|b online resource.
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
347 |
|
|
|a text file
|b PDF
|2 rda
|
490 |
1 |
|
|a Lecture Notes in Computer Science,
|x 0302-9743 ;
|v 3848
|
505 |
0 |
|
|a The Hows, Whys, and Whens of Constraints in Itemset and Rule Discovery -- A Relational Query Primitive for Constraint-Based Pattern Mining -- To See the Wood for the Trees: Mining Frequent Tree Patterns -- A Survey on Condensed Representations for Frequent Sets -- Adaptive Strategies for Mining the Positive Border of Interesting Patterns: Application to Inclusion Dependencies in Databases -- Computation of Mining Queries: An Algebraic Approach -- Inductive Queries on Polynomial Equations -- Mining Constrained Graphs: The Case of Workflow Systems -- CrossMine: Efficient Classification Across Multiple Database Relations -- Remarks on the Industrial Application of Inductive Database Technologies -- How to Quickly Find a Witness -- Relevancy in Constraint-Based Subgroup Discovery -- A Novel Incremental Approach to Association Rules Mining in Inductive Databases -- Employing Inductive Databases in Concrete Applications -- Contribution to Gene Expression Data Analysis by Means of Set Pattern Mining -- Boolean Formulas and Frequent Sets -- Generic Pattern Mining Via Data Mining Template Library -- Inductive Querying for Discovering Subgroups and Clusters.
|
650 |
|
0 |
|a Computer science.
|
650 |
|
0 |
|a Computers.
|
650 |
|
0 |
|a Database management.
|
650 |
|
0 |
|a Information storage and retrieval.
|
650 |
|
0 |
|a Artificial intelligence.
|
650 |
|
0 |
|a Pattern recognition.
|
650 |
1 |
4 |
|a Computer Science.
|
650 |
2 |
4 |
|a Artificial Intelligence (incl. Robotics).
|
650 |
2 |
4 |
|a Computation by Abstract Devices.
|
650 |
2 |
4 |
|a Database Management.
|
650 |
2 |
4 |
|a Information Storage and Retrieval.
|
650 |
2 |
4 |
|a Pattern Recognition.
|
700 |
1 |
|
|a Boulicaut, Jean-François.
|e editor.
|
700 |
1 |
|
|a Raedt, Luc De.
|e editor.
|
700 |
1 |
|
|a Mannila, Heikki.
|e editor.
|
710 |
2 |
|
|a SpringerLink (Online service)
|
773 |
0 |
|
|t Springer eBooks
|
776 |
0 |
8 |
|i Printed edition:
|z 9783540313311
|
830 |
|
0 |
|a Lecture Notes in Computer Science,
|x 0302-9743 ;
|v 3848
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1007/11615576
|z Full Text via HEAL-Link
|
912 |
|
|
|a ZDB-2-SCS
|
912 |
|
|
|a ZDB-2-LNC
|
950 |
|
|
|a Computer Science (Springer-11645)
|