The Local Langlands Conjecture for GL(2)
If F is a non-Archimedean local field, local class field theory can be viewed as giving a canonical bijection between the characters of the multiplicative group GL(1,F) of F and the characters of the Weil group of F. If n is a positive integer, the n-dimensional analogue of a character of the multip...
| Κύριοι συγγραφείς: | , |
|---|---|
| Συγγραφή απο Οργανισμό/Αρχή: | |
| Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
| Γλώσσα: | English |
| Έκδοση: |
Berlin, Heidelberg :
Springer Berlin Heidelberg,
2006.
|
| Σειρά: | Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics,
335 |
| Θέματα: | |
| Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- Smooth Representations
- Finite Fields
- Induced Representations of Linear Groups
- Cuspidal Representations
- Parametrization of Tame Cuspidals
- Functional Equation
- Representations of Weil Groups
- The Langlands Correspondence
- The Weil Representation
- Arithmetic of Dyadic Fields
- Ordinary Representations
- The Dyadic Langlands Correspondence
- The Jacquet-Langlands Correspondence.