Introducing Molecular Electronics

This volume presents a summary of our current understanding of molecular electronics combined with selected state-of-the-art results at a level accessible to the advanced undergraduate or novice postgraduate. This single book comprises the basic knowledge of both theory and experiment underpinning t...

Full description

Bibliographic Details
Corporate Author: SpringerLink (Online service)
Other Authors: Cuniberti, Gianaurelio (Editor), Richter, Klaus (Editor), Fagas, Giorgos (Editor)
Format: Electronic eBook
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg, 2005.
Series:Lecture Notes in Physics, 680
Subjects:
Online Access:Full Text via HEAL-Link
Table of Contents:
  • Theory
  • Foundations of Molecular Electronics – Charge Transport in Molecular Conduction Junctions
  • AC-Driven Transport Through Molecular Wires
  • Electronic Structure Calculations for Nanomolecular Systems
  • Ab-initio Non-Equilibrium Green’s Function Formalism for Calculating Electron Transport in Molecular Devices
  • Tight-Binding DFT for Molecular Electronics (gDFTB)
  • Current-Induced Effects in Nanoscale Conductors
  • Single Electron Tunneling in Small Molecules
  • Transport through Intrinsic Quantum Dots in Interacting Carbon Nanotubes
  • Introducing Molecular Electronics: A Brief Overview
  • Introducing Molecular Electronics: A Brief Overview
  • Experiment
  • Contacting Individual Molecules Using Mechanically Controllable Break Junctions
  • Intrinsic Electronic Conduction Mechanisms in Self-Assembled Monolayers
  • Making Contacts to Single Molecules: Are We There Yet?
  • Six Unimolecular Rectifiers and What Lies Ahead
  • Quantum Transport in Carbon Nanotubes
  • Carbon Nanotube Electronics and Optoelectronics
  • Charge Transport in DNA-based Devices
  • Outlook
  • CMOL: Devices, Circuits, and Architectures
  • Architectures and Simulations for Nanoprocessor Systems Integrated on the Molecular Scale.