Quantum Field Theory and Noncommutative Geometry

This volume reflects the growing collaboration between mathematicians and theoretical physicists to treat the foundations of quantum field theory using the mathematical tools of q-deformed algebras and noncommutative differential geometry. A particular challenge is posed by gravity, which probably n...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Carow-Watamura, Ursula (Επιμελητής έκδοσης), Maeda, Yoshiaki (Επιμελητής έκδοσης), Watamura, Satoshi (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2005.
Σειρά:Lecture Notes in Physics, 662
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02926nam a22005775i 4500
001 978-3-540-31526-1
003 DE-He213
005 20151030081453.0
007 cr nn 008mamaa
008 100806s2005 gw | s |||| 0|eng d
020 |a 9783540315261  |9 978-3-540-31526-1 
024 7 |a 10.1007/b102320  |2 doi 
040 |d GrThAP 
050 4 |a QC5.53 
072 7 |a PHU  |2 bicssc 
072 7 |a SCI040000  |2 bisacsh 
082 0 4 |a 530.15  |2 23 
245 1 0 |a Quantum Field Theory and Noncommutative Geometry  |h [electronic resource] /  |c edited by Ursula Carow-Watamura, Yoshiaki Maeda, Satoshi Watamura. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2005. 
300 |a X, 298 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Physics,  |x 0075-8450 ;  |v 662 
505 0 |a Noncommutative Geometry -- Poisson Geometry and Deformation Quantization -- Applications in Physics -- Topological Quantum Field Theory. 
520 |a This volume reflects the growing collaboration between mathematicians and theoretical physicists to treat the foundations of quantum field theory using the mathematical tools of q-deformed algebras and noncommutative differential geometry. A particular challenge is posed by gravity, which probably necessitates extension of these methods to geometries with minimum length and therefore quantization of space. This volume builds on the lectures and talks that have been given at a recent meeting on "Quantum Field Theory and Noncommutative Geometry." A considerable effort has been invested in making the contributions accessible to a wider community of readers - so this volume will not only benefit researchers in the field but also postgraduate students and scientists from related areas wishing to become better acquainted with this field. 
650 0 |a Physics. 
650 0 |a Topological groups. 
650 0 |a Lie groups. 
650 0 |a Differential geometry. 
650 0 |a Algebraic topology. 
650 0 |a Elementary particles (Physics). 
650 0 |a Quantum field theory. 
650 1 4 |a Physics. 
650 2 4 |a Mathematical Methods in Physics. 
650 2 4 |a Topological Groups, Lie Groups. 
650 2 4 |a Algebraic Topology. 
650 2 4 |a Differential Geometry. 
650 2 4 |a Elementary Particles, Quantum Field Theory. 
700 1 |a Carow-Watamura, Ursula.  |e editor. 
700 1 |a Maeda, Yoshiaki.  |e editor. 
700 1 |a Watamura, Satoshi.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540239000 
830 0 |a Lecture Notes in Physics,  |x 0075-8450 ;  |v 662 
856 4 0 |u http://dx.doi.org/10.1007/b102320  |z Full Text via HEAL-Link 
912 |a ZDB-2-PHA 
912 |a ZDB-2-LNP 
950 |a Physics and Astronomy (Springer-11651)