Geometry of Müntz Spaces and Related Questions

Starting point and motivation for this volume is the classical Muentz theorem which states that the space of all polynomials on the unit interval, whose exponents have too many gaps, is no longer dense in the space of all continuous functions. The resulting spaces of Muentz polynomials are largely u...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Gurariy, Vladimir I. (Συγγραφέας), Lusky, Wolfgang (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2005.
Σειρά:Lecture Notes in Mathematics, 1870
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03289nam a22004815i 4500
001 978-3-540-31546-9
003 DE-He213
005 20160823091542.0
007 cr nn 008mamaa
008 100806s2005 gw | s |||| 0|eng d
020 |a 9783540315469  |9 978-3-540-31546-9 
024 7 |a 10.1007/11551621  |2 doi 
040 |d GrThAP 
050 4 |a QA319-329.9 
072 7 |a PBKF  |2 bicssc 
072 7 |a MAT037000  |2 bisacsh 
082 0 4 |a 515.7  |2 23 
100 1 |a Gurariy, Vladimir I.  |e author. 
245 1 0 |a Geometry of Müntz Spaces and Related Questions  |h [electronic resource] /  |c by Vladimir I. Gurariy, Wolfgang Lusky. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2005. 
300 |a XIII, 176 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1870 
505 0 |a Preface -- Part I Subspaces and Sequences in Banach Spaces: Disposition of Subspaces -- Sequences in Normed Spaces -- Isomorphism, Isometries and Embeddings -- Spaces of Universal Disposition -- Bounded Approximation Properties -- Part II On the Geometry of Müntz Sequences: Coefficient Estimates and the Müntz Theorem -- Classification and Elementary Properties of Müntz Sequences -- More on the Geometry of Müntz Sequences and Müntz Polynomials -- Operators of Finite Rank and Bases in Müntz Spaces -- Projection Types and the Isomorphism Problem for Müntz Spaces -- The Classes [M], A, P, and Pe -- Finite Dimensional Müntz Limiting Spaces in C -- References -- Index. 
520 |a Starting point and motivation for this volume is the classical Muentz theorem which states that the space of all polynomials on the unit interval, whose exponents have too many gaps, is no longer dense in the space of all continuous functions. The resulting spaces of Muentz polynomials are largely unexplored as far as the Banach space geometry is concerned and deserve the attention that the authors arouse. They present the known theorems and prove new results concerning, for example, the isomorphic and isometric classification and the existence of bases in these spaces. Moreover they state many open problems. Although the viewpoint is that of the geometry of Banach spaces they only assume that the reader is familiar with basic functional analysis. In the first part of the book the Banach spaces notions are systematically introduced and are later on applied for Muentz spaces. They include the opening and inclination of subspaces, bases and bounded approximation properties and versions of universality. 
650 0 |a Mathematics. 
650 0 |a Functional analysis. 
650 0 |a Geometry. 
650 1 4 |a Mathematics. 
650 2 4 |a Functional Analysis. 
650 2 4 |a Geometry. 
700 1 |a Lusky, Wolfgang.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540288008 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1870 
856 4 0 |u http://dx.doi.org/10.1007/11551621  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (Springer-11649)