Geometry of Müntz Spaces and Related Questions
Starting point and motivation for this volume is the classical Muentz theorem which states that the space of all polynomials on the unit interval, whose exponents have too many gaps, is no longer dense in the space of all continuous functions. The resulting spaces of Muentz polynomials are largely u...
Κύριοι συγγραφείς: | , |
---|---|
Συγγραφή απο Οργανισμό/Αρχή: | |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Berlin, Heidelberg :
Springer Berlin Heidelberg : Imprint: Springer,
2005.
|
Σειρά: | Lecture Notes in Mathematics,
1870 |
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- Preface
- Part I Subspaces and Sequences in Banach Spaces: Disposition of Subspaces
- Sequences in Normed Spaces
- Isomorphism, Isometries and Embeddings
- Spaces of Universal Disposition
- Bounded Approximation Properties
- Part II On the Geometry of Müntz Sequences: Coefficient Estimates and the Müntz Theorem
- Classification and Elementary Properties of Müntz Sequences
- More on the Geometry of Müntz Sequences and Müntz Polynomials
- Operators of Finite Rank and Bases in Müntz Spaces
- Projection Types and the Isomorphism Problem for Müntz Spaces
- The Classes [M], A, P, and Pe
- Finite Dimensional Müntz Limiting Spaces in C
- References
- Index.