Hypoelliptic Estimates and Spectral Theory for Fokker-Planck Operators and Witten Laplacians

There has recently been a renewal of interest in Fokker-Planck operators, motivated by problems in statistical physics, in kinetic equations and differential geometry. Compared to more standard problems in the spectral theory of partial differential operators, those operators are not self-adjoint an...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Helffer, Bernard (Συγγραφέας), Nier, Francis (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2005.
Σειρά:Lecture Notes in Mathematics, 1862
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04169nam a22006255i 4500
001 978-3-540-31553-7
003 DE-He213
005 20161020090235.0
007 cr nn 008mamaa
008 100806s2005 gw | s |||| 0|eng d
020 |a 9783540315537  |9 978-3-540-31553-7 
024 7 |a 10.1007/b104762  |2 doi 
040 |d GrThAP 
050 4 |a QA370-380 
072 7 |a PBKJ  |2 bicssc 
072 7 |a MAT007000  |2 bisacsh 
082 0 4 |a 515.353  |2 23 
100 1 |a Helffer, Bernard.  |e author. 
245 1 0 |a Hypoelliptic Estimates and Spectral Theory for Fokker-Planck Operators and Witten Laplacians  |h [electronic resource] /  |c by Bernard Helffer, Francis Nier. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2005. 
300 |a X, 209 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1862 
505 0 |a Kohn's Proof of the Hypoellipticity of the Hörmander Operators -- Compactness Criteria for the Resolvent of Schrödinger Operators -- Global Pseudo-differential Calculus -- Analysis of some Fokker-Planck Operator -- Return to Equillibrium for the Fokker-Planck Operator -- Hypoellipticity and Nilpotent Groups -- Maximal Hypoellipticity for Polynomial of Vector Fields and Spectral Byproducts -- On Fokker-Planck Operators and Nilpotent Techniques -- Maximal Microhypoellipticity for Systems and Applications to Witten Laplacians -- Spectral Properties of the Witten-Laplacians in Connection with Poincaré Inequalities for Laplace Integrals -- Semi-classical Analysis for the Schrödinger Operator: Harmonic Approximation -- Decay of Eigenfunctions and Application to the Splitting -- Semi-classical Analysis and Witten Laplacians: Morse Inequalities -- Semi-classical Analysis and Witten Laplacians: Tunneling Effects -- Accurate Asymptotics for the Exponentially Small Eigenvalues of the Witten Laplacian -- Application to the Fokker-Planck Equation -- Epilogue -- Index. 
520 |a There has recently been a renewal of interest in Fokker-Planck operators, motivated by problems in statistical physics, in kinetic equations and differential geometry. Compared to more standard problems in the spectral theory of partial differential operators, those operators are not self-adjoint and only hypoelliptic. The aim of the analysis is to give, as generally as possible, an accurate qualitative and quantitative description of the exponential return to the thermodynamical equilibrium. While exploring and improving recent results in this direction this volume proposes a review of known techniques on: the hypoellipticity of polynomial of vector fields and its global counterpart; the global Weyl-Hörmander pseudo-differential calculus, the spectral theory of non-self-adjoint operators, the semi-classical analysis of Schrödinger-type operators, the Witten complexes and the Morse inequalities. 
650 0 |a Mathematics. 
650 0 |a Global analysis (Mathematics). 
650 0 |a Manifolds (Mathematics). 
650 0 |a Partial differential equations. 
650 0 |a Geometry. 
650 0 |a Quantum physics. 
650 0 |a Statistics. 
650 0 |a Thermodynamics. 
650 0 |a Heat engineering. 
650 0 |a Heat transfer. 
650 0 |a Mass transfer. 
650 1 4 |a Mathematics. 
650 2 4 |a Partial Differential Equations. 
650 2 4 |a Engineering Thermodynamics, Heat and Mass Transfer. 
650 2 4 |a Geometry. 
650 2 4 |a Global Analysis and Analysis on Manifolds. 
650 2 4 |a Quantum Physics. 
650 2 4 |a Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences. 
700 1 |a Nier, Francis.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540242000 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1862 
856 4 0 |u http://dx.doi.org/10.1007/b104762  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (Springer-11649)