Kernel Based Algorithms for Mining Huge Data Sets Supervised, Semi-supervised, and Unsupervised Learning /

"Kernel Based Algorithms for Mining Huge Data Sets" is the first book treating the fields of supervised, semi-supervised and unsupervised machine learning collectively. The book presents both the theory and the algorithms for mining huge data sets by using support vector machines (SVMs) in...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Huang, Te-Ming (Συγγραφέας), Kecman, Vojislav (Συγγραφέας), Kopriva, Ivica (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2006.
Σειρά:Studies in Computational Intelligence, 17
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03558nam a22005295i 4500
001 978-3-540-31689-3
003 DE-He213
005 20151204152946.0
007 cr nn 008mamaa
008 100301s2006 gw | s |||| 0|eng d
020 |a 9783540316893  |9 978-3-540-31689-3 
024 7 |a 10.1007/3-540-31689-2  |2 doi 
040 |d GrThAP 
050 4 |a QA76.9.D343 
072 7 |a UNF  |2 bicssc 
072 7 |a UYQE  |2 bicssc 
072 7 |a COM021030  |2 bisacsh 
082 0 4 |a 006.312  |2 23 
100 1 |a Huang, Te-Ming.  |e author. 
245 1 0 |a Kernel Based Algorithms for Mining Huge Data Sets  |h [electronic resource] :  |b Supervised, Semi-supervised, and Unsupervised Learning /  |c by Te-Ming Huang, Vojislav Kecman, Ivica Kopriva. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2006. 
300 |a XVI, 260 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Computational Intelligence,  |x 1860-949X ;  |v 17 
505 0 |a Support Vector Machines in Classification and Regression — An Introduction -- Iterative Single Data Algorithm for Kernel Machines from Huge Data Sets: Theory and Performance -- Feature Reduction with Support Vector Machines and Application in DNA Microarray Analysis -- Semi-supervised Learning and Applications -- Unsupervised Learning by Principal and Independent Component Analysis. 
520 |a "Kernel Based Algorithms for Mining Huge Data Sets" is the first book treating the fields of supervised, semi-supervised and unsupervised machine learning collectively. The book presents both the theory and the algorithms for mining huge data sets by using support vector machines (SVMs) in an iterative way. It demonstrates how kernel based SVMs can be used for dimensionality reduction (feature elimination) and shows the similarities and differences between the two most popular unsupervised techniques, the principal component analysis (PCA) and the independent component analysis (ICA). The book presents various examples, software, algorithmic solutions enabling the reader to develop their own codes for solving the problems. The book is accompanied by a website for downloading both data and software for huge data sets modeling in a supervised and semisupervised manner, as well as MATLAB based PCA and ICA routines for unsupervised learning. The book focuses on a broad range of machine learning algorithms and it is particularly aimed at students, scientists, and practicing researchers in bioinformatics (gene microarrays), text-categorization, numerals recognition, as well as in the images and audio signals de-mixing (blind source separation) areas. 
650 0 |a Computer science. 
650 0 |a Data mining. 
650 0 |a Artificial intelligence. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 1 4 |a Computer Science. 
650 2 4 |a Data Mining and Knowledge Discovery. 
650 2 4 |a Appl.Mathematics/Computational Methods of Engineering. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
700 1 |a Kecman, Vojislav.  |e author. 
700 1 |a Kopriva, Ivica.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540316817 
830 0 |a Studies in Computational Intelligence,  |x 1860-949X ;  |v 17 
856 4 0 |u http://dx.doi.org/10.1007/3-540-31689-2  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)