Kernel Based Algorithms for Mining Huge Data Sets Supervised, Semi-supervised, and Unsupervised Learning /

"Kernel Based Algorithms for Mining Huge Data Sets" is the first book treating the fields of supervised, semi-supervised and unsupervised machine learning collectively. The book presents both the theory and the algorithms for mining huge data sets by using support vector machines (SVMs) in...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Huang, Te-Ming (Συγγραφέας), Kecman, Vojislav (Συγγραφέας), Kopriva, Ivica (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2006.
Σειρά:Studies in Computational Intelligence, 17
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • Support Vector Machines in Classification and Regression — An Introduction
  • Iterative Single Data Algorithm for Kernel Machines from Huge Data Sets: Theory and Performance
  • Feature Reduction with Support Vector Machines and Application in DNA Microarray Analysis
  • Semi-supervised Learning and Applications
  • Unsupervised Learning by Principal and Independent Component Analysis.