Error-Correcting Linear Codes Classification by Isometry and Applications /

This text offers a thorough introduction to the mathematical concepts behind the theory of error-correcting linear codes. Care is taken to introduce the necessary algebraic concepts, for instance the theory of finite fields, the polynomial rings over such fields and the ubiquitous concept of group a...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Betten, Anton (Συγγραφέας), Braun, Michael (Συγγραφέας), Fripertinger, Harald (Συγγραφέας), Kerber, Adalbert (Συγγραφέας), Kohnert, Axel (Συγγραφέας), Wassermann, Alfred (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2006.
Σειρά:Algorithms and Computation in Mathematics, 18
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03413nam a22005775i 4500
001 978-3-540-31703-6
003 DE-He213
005 20141123021641.0
007 cr nn 008mamaa
008 100301s2006 gw | s |||| 0|eng d
020 |a 9783540317036  |9 978-3-540-31703-6 
024 7 |a 10.1007/3-540-31703-1  |2 doi 
040 |d GrThAP 
050 4 |a QA150-272 
072 7 |a PBF  |2 bicssc 
072 7 |a MAT002000  |2 bisacsh 
082 0 4 |a 512  |2 23 
100 1 |a Betten, Anton.  |e author. 
245 1 0 |a Error-Correcting Linear Codes  |h [electronic resource] :  |b Classification by Isometry and Applications /  |c by Anton Betten, Michael Braun, Harald Fripertinger, Adalbert Kerber, Axel Kohnert, Alfred Wassermann. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2006. 
300 |a XXIX, 798 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Algorithms and Computation in Mathematics,  |x 1431-1550 ;  |v 18 
505 0 |a Linear Codes -- Bounds and Modifications -- Finite Fields -- Cyclic Codes -- Mathematics and Audio Compact Discs -- Enumeration of Isometry Classes -- Solving Systems of Diophantine Linear Equations -- Linear Codes with a Prescribed Minimum Distance -- The General Case. 
520 |a This text offers a thorough introduction to the mathematical concepts behind the theory of error-correcting linear codes. Care is taken to introduce the necessary algebraic concepts, for instance the theory of finite fields, the polynomial rings over such fields and the ubiquitous concept of group actions that allows the classification of codes by isometry. The book provides in-depth coverage of important topics like cyclic codes and the coding theory used in compact disc players. The final four chapters cover advanced and algorithmic topics like the classification of linear codes by isometry, the enumeration of isometry classes, random generation of codes, the use of lattice basis reduction to compute minimum distances, the explicit construction of codes with given parameters, as well as the systematic evaluation of representatives of all isometry classes of codes. Up until now, these advanced topics have only been covered in research papers. The present book provides access to these results at a level which is suitable for graduate students of mathematics, computer science and engineering as well as for researchers. 
650 0 |a Mathematics. 
650 0 |a Coding theory. 
650 0 |a Algebra. 
650 0 |a Algorithms. 
650 0 |a Combinatorics. 
650 1 4 |a Mathematics. 
650 2 4 |a Algebra. 
650 2 4 |a Algorithms. 
650 2 4 |a Coding and Information Theory. 
650 2 4 |a Signal, Image and Speech Processing. 
650 2 4 |a Combinatorics. 
700 1 |a Braun, Michael.  |e author. 
700 1 |a Fripertinger, Harald.  |e author. 
700 1 |a Kerber, Adalbert.  |e author. 
700 1 |a Kohnert, Axel.  |e author. 
700 1 |a Wassermann, Alfred.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540283713 
830 0 |a Algorithms and Computation in Mathematics,  |x 1431-1550 ;  |v 18 
856 4 0 |u http://dx.doi.org/10.1007/3-540-31703-1  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)