Data Analysis Using the Method of Least Squares Extracting the Most Information from Experiments /

The preferred method of data analysis of quantitative experiments is the method of least squares. Often, however, the full power of the method is overlooked and very few books deal with this subject at the level that it deserves. The purpose of Data Analysis Using the Methods of Least Squares is to...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Wolberg, John (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2006.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02690nam a22004815i 4500
001 978-3-540-31720-3
003 DE-He213
005 20151204174644.0
007 cr nn 008mamaa
008 100301s2006 gw | s |||| 0|eng d
020 |a 9783540317203  |9 978-3-540-31720-3 
024 7 |a 10.1007/3-540-31720-1  |2 doi 
040 |d GrThAP 
050 4 |a QA276-280 
072 7 |a PBT  |2 bicssc 
072 7 |a PD  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
082 0 4 |a 519.5  |2 23 
100 1 |a Wolberg, John.  |e author. 
245 1 0 |a Data Analysis Using the Method of Least Squares  |h [electronic resource] :  |b Extracting the Most Information from Experiments /  |c by John Wolberg. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2006. 
300 |a XIII, 250 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a The Method of Least Squares -- Model Evaluation -- Candidate Predictors -- Designing Quantitative Experiments -- Software -- Kernel Regression. 
520 |a The preferred method of data analysis of quantitative experiments is the method of least squares. Often, however, the full power of the method is overlooked and very few books deal with this subject at the level that it deserves. The purpose of Data Analysis Using the Methods of Least Squares is to fill this gap and include the type of information required to help scientists and engineers apply the method to problems in their special fields of interest. In addition, graduate students in science and engineering doing work of experimental nature can benefit from this book. Particularly, both linear and non-linear least squares, the use of experimental error estimates for data weighting, procedures to include prior estimates, methodology for selecting and testing models, prediction analysis, and some non-parametric methods are discussed. 
650 0 |a Statistics. 
650 0 |a Physical measurements. 
650 0 |a Measurement. 
650 0 |a Computational intelligence. 
650 1 4 |a Statistics. 
650 2 4 |a Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences. 
650 2 4 |a Statistics for Business/Economics/Mathematical Finance/Insurance. 
650 2 4 |a Computational Intelligence. 
650 2 4 |a Measurement Science and Instrumentation. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540256748 
856 4 0 |u http://dx.doi.org/10.1007/3-540-31720-1  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)