Deterministic and Statistical Methods in Machine Learning First International Workshop, Sheffield, UK, September 7-10, 2004. Revised Lectures /
Συγγραφή απο Οργανισμό/Αρχή: | |
---|---|
Άλλοι συγγραφείς: | , , |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Berlin, Heidelberg :
Springer Berlin Heidelberg,
2005.
|
Σειρά: | Lecture Notes in Computer Science,
3635 |
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- Object Recognition via Local Patch Labelling
- Multi Channel Sequence Processing
- Bayesian Kernel Learning Methods for Parametric Accelerated Life Survival Analysis
- Extensions of the Informative Vector Machine
- Efficient Communication by Breathing
- Guiding Local Regression Using Visualisation
- Transformations of Gaussian Process Priors
- Kernel Based Learning Methods: Regularization Networks and RBF Networks
- Redundant Bit Vectors for Quickly Searching High-Dimensional Regions
- Bayesian Independent Component Analysis with Prior Constraints: An Application in Biosignal Analysis
- Ensemble Algorithms for Feature Selection
- Can Gaussian Process Regression Be Made Robust Against Model Mismatch?
- Understanding Gaussian Process Regression Using the Equivalent Kernel
- Integrating Binding Site Predictions Using Non-linear Classification Methods
- Support Vector Machine to Synthesise Kernels
- Appropriate Kernel Functions for Support Vector Machine Learning with Sequences of Symbolic Data
- Variational Bayes Estimation of Mixing Coefficients
- A Comparison of Condition Numbers for the Full Rank Least Squares Problem
- SVM Based Learning System for Information Extraction.