Deterministic and Statistical Methods in Machine Learning First International Workshop, Sheffield, UK, September 7-10, 2004. Revised Lectures /

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Winkler, Joab (Επιμελητής έκδοσης), Niranjan, Mahesan (Επιμελητής έκδοσης), Lawrence, Neil (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2005.
Σειρά:Lecture Notes in Computer Science, 3635
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • Object Recognition via Local Patch Labelling
  • Multi Channel Sequence Processing
  • Bayesian Kernel Learning Methods for Parametric Accelerated Life Survival Analysis
  • Extensions of the Informative Vector Machine
  • Efficient Communication by Breathing
  • Guiding Local Regression Using Visualisation
  • Transformations of Gaussian Process Priors
  • Kernel Based Learning Methods: Regularization Networks and RBF Networks
  • Redundant Bit Vectors for Quickly Searching High-Dimensional Regions
  • Bayesian Independent Component Analysis with Prior Constraints: An Application in Biosignal Analysis
  • Ensemble Algorithms for Feature Selection
  • Can Gaussian Process Regression Be Made Robust Against Model Mismatch?
  • Understanding Gaussian Process Regression Using the Equivalent Kernel
  • Integrating Binding Site Predictions Using Non-linear Classification Methods
  • Support Vector Machine to Synthesise Kernels
  • Appropriate Kernel Functions for Support Vector Machine Learning with Sequences of Symbolic Data
  • Variational Bayes Estimation of Mixing Coefficients
  • A Comparison of Condition Numbers for the Full Rank Least Squares Problem
  • SVM Based Learning System for Information Extraction.