Inductive Logic Programming 15th International Conference, ILP 2005, Bonn, Germany, August 10-13, 2005. Proceedings /

1 “Change is inevitable.” Embracing this quote we have tried to carefully exp- iment with the format of this conference, the 15th International Conference on Inductive Logic Programming, hopefully making it even better than it already was. But it will be up to you, the inquisitive reader of this boo...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Kramer, Stefan (Επιμελητής έκδοσης), Pfahringer, Bernhard (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2005.
Σειρά:Lecture Notes in Computer Science, 3625
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 05148nam a22005655i 4500
001 978-3-540-31851-4
003 DE-He213
005 20151204143923.0
007 cr nn 008mamaa
008 100721s2005 gw | s |||| 0|eng d
020 |a 9783540318514  |9 978-3-540-31851-4 
024 7 |a 10.1007/11536314  |2 doi 
040 |d GrThAP 
050 4 |a QA76.758 
072 7 |a UMZ  |2 bicssc 
072 7 |a UL  |2 bicssc 
072 7 |a COM051230  |2 bisacsh 
082 0 4 |a 005.1  |2 23 
245 1 0 |a Inductive Logic Programming  |h [electronic resource] :  |b 15th International Conference, ILP 2005, Bonn, Germany, August 10-13, 2005. Proceedings /  |c edited by Stefan Kramer, Bernhard Pfahringer. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2005. 
300 |a XIV, 434 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Computer Science,  |x 0302-9743 ;  |v 3625 
505 0 |a Research Papers -- An Output-Polynomial Time Algorithm for Mining Frequent Closed Attribute Trees -- Guiding Inference Through Relational Reinforcement Learning -- Converting Semantic Meta-knowledge into Inductive Bias -- Learning Teleoreactive Logic Programs from Problem Solving -- A Framework for Set-Oriented Computation in Inductive Logic Programming and Its Application in Generalizing Inverse Entailment -- Distance Based Generalisation -- Automatic Induction of Abduction and Abstraction Theories from Observations -- Logical Bayesian Networks and Their Relation to Other Probabilistic Logical Models -- Strategies to Parallelize ILP Systems -- Inducing Causal Laws by Regular Inference -- Online Closure-Based Learning of Relational Theories -- Learning Closed Sets of Labeled Graphs for Chemical Applications -- ILP Meets Knowledge Engineering: A Case Study -- Spatial Clustering of Structured Objects -- Generalization Behaviour of Alkemic Decision Trees -- Predicate Selection for Structural Decision Trees -- Induction of the Indirect Effects of Actions by Monotonic Methods -- Probabilistic First-Order Theory Revision from Examples -- Inductive Equivalence of Logic Programs -- Deriving a Stationary Dynamic Bayesian Network from a Logic Program with Recursive Loops -- A Study of Applying Dimensionality Reduction to Restrict the Size of a Hypothesis Space -- Polynomial Time Inductive Inference of TTSP Graph Languages from Positive Data -- Classifying Relational Data with Neural Networks -- Efficient Sampling in Relational Feature Spaces -- Invited Papers -- Why Computers Need to Learn About Music -- Tutorial on Statistical Relational Learning -- Machine Learning for Systems Biology -- Five Problems in Five Areas for Five Years. 
520 |a 1 “Change is inevitable.” Embracing this quote we have tried to carefully exp- iment with the format of this conference, the 15th International Conference on Inductive Logic Programming, hopefully making it even better than it already was. But it will be up to you, the inquisitive reader of this book, to judge our success. The major changes comprised broadening the scope of the conference to include more diverse forms of non-propositional learning, to once again have tutorials on exciting new areas, and, for the ?rst time, to also have a discovery challenge as a platform for collaborative work. This year the conference was co-located with ICML 2005, the 22nd Inter- tional Conference on Machine Learning, and also in close proximity to IJCAI 2005, the 19th International Joint Conference on Arti?cial Intelligence. - location can be tricky, but we greatly bene?ted from the local support provided by Codrina Lauth, Michael May, and others. We were also able to invite all ILP and ICML participants to shared events including a poster session, an invited talk, and a tutorial about the exciting new area of “statistical relational lea- ing”. Two more invited talks were exclusively given to ILP participants and were presented as a kind of stock-taking—?ttingly so for the 15th event in a series—but also tried to provide a recipe for future endeavours. 
650 0 |a Computer science. 
650 0 |a Software engineering. 
650 0 |a Computer programming. 
650 0 |a Algorithms. 
650 0 |a Mathematical logic. 
650 0 |a Artificial intelligence. 
650 1 4 |a Computer Science. 
650 2 4 |a Software Engineering/Programming and Operating Systems. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
650 2 4 |a Programming Techniques. 
650 2 4 |a Mathematical Logic and Formal Languages. 
650 2 4 |a Algorithm Analysis and Problem Complexity. 
700 1 |a Kramer, Stefan.  |e editor. 
700 1 |a Pfahringer, Bernhard.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540281771 
830 0 |a Lecture Notes in Computer Science,  |x 0302-9743 ;  |v 3625 
856 4 0 |u http://dx.doi.org/10.1007/11536314  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
912 |a ZDB-2-LNC 
950 |a Computer Science (Springer-11645)