Analysis and Modelling of Faces and Gestures Second International Workshop, AMFG 2005, Beijing, China, October 16, 2005. Proceedings /

During the last 30 years, face recognition and related problems such as face detection/tracking and facial expression recognition have attracted researchers from both the engineering and psychology communities. In addition, extensive research has been carried out to study hand and body gestures. The...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Zhao, Wenyi (Επιμελητής έκδοσης), Gong, Shaogang (Επιμελητής έκδοσης), Tang, Xiaoou (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2005.
Σειρά:Lecture Notes in Computer Science, 3723
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 05933nam a22005775i 4500
001 978-3-540-32074-6
003 DE-He213
005 20151204160401.0
007 cr nn 008mamaa
008 100319s2005 gw | s |||| 0|eng d
020 |a 9783540320746  |9 978-3-540-32074-6 
024 7 |a 10.1007/11564386  |2 doi 
040 |d GrThAP 
050 4 |a Q337.5 
050 4 |a TK7882.P3 
072 7 |a UYQP  |2 bicssc 
072 7 |a COM016000  |2 bisacsh 
082 0 4 |a 006.4  |2 23 
245 1 0 |a Analysis and Modelling of Faces and Gestures  |h [electronic resource] :  |b Second International Workshop, AMFG 2005, Beijing, China, October 16, 2005. Proceedings /  |c edited by Wenyi Zhao, Shaogang Gong, Xiaoou Tang. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2005. 
300 |a XI, 424 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Computer Science,  |x 0302-9743 ;  |v 3723 
505 0 |a Oral Sessions -- Facial Expression Analysis -- Modeling Micro-patterns for Feature Extraction -- Facial Expression Analysis Using Nonlinear Decomposable Generative Models -- Kernel Correlation Filter Based Redundant Class-Dependence Feature Analysis (KCFA) on FRGC2.0 Data -- Learning to Fuse 3D+2D Based Face Recognition at Both Feature and Decision Levels -- A New Combinatorial Approach to Supervised Learning: Application to Gait Recognition -- Learning a Dynamic Classification Method to Detect Faces and Identify Facial Expression -- How to Train a Classifier Based on the Huge Face Database? -- Non-rigid Face Modelling Using Shape Priors -- Parametric Stereo for Multi-pose Face Recognition and 3D-Face Modeling -- An Investigation of Model Bias in 3D Face Tracking -- Poster Sessions -- Facial Expression Representation Based on Timing Structures in Faces -- A Practical Face Relighting Method for Directional Lighting Normalization -- Face Recognition Based on Local Steerable Feature and Random Subspace LDA -- Online Feature Selection Using Mutual Information for Real-Time Multi-view Object Tracking -- A Binary Decision Tree Implementation of a Boosted Strong Classifier -- Robust Facial Landmark Detection for Intelligent Vehicle System -- Pose-Encoded Spherical Harmonics for Robust Face Recognition Using a Single Image -- Advantages of 3D Methods for Face Recognition Research in Humans -- The CMU Face In Action (FIA) Database -- Robust Automatic Human Identification Using Face, Mouth, and Acoustic Information -- AdaBoost Gabor Fisher Classifier for Face Recognition -- Automatic 3D Facial Expression Analysis in Videos -- Real-Time Modeling of Face Deformation for 3D Head Pose Estimation -- An Integrated Two-Stage Framework for Robust Head Pose Estimation -- Gabor-Eigen-Whiten-Cosine: A Robust Scheme for Face Recognition -- Two-Dimensional Non-negative Matrix Factorization for Face Representation and Recognition -- Face View Synthesis Across Large Angles -- Regularization of LDA for Face Recognition: A Post-processing Approach -- Linear Programming for Matching in Human Body Gesture Recognition -- Combination of Projectional and Locational Decompositions for Robust Face Recognition. 
520 |a During the last 30 years, face recognition and related problems such as face detection/tracking and facial expression recognition have attracted researchers from both the engineering and psychology communities. In addition, extensive research has been carried out to study hand and body gestures. The understanding of how humans perceive these important cues has significant scientific value and extensive applications. For example, human-computer interaction, visual surveillance, and smart video indexing are active application areas. Aiming towards putting such amazing perception capability onto computer systems, researchers have made substantial progress. However, technological challenges still exist in many aspects. Following a format similar to the IEEE International Workshop on Analysis and Modeling of Faces and Gestures (AMFG) 2003, this one-day workshop (AMFG 2005) provided a focused international forum to bring together well-known researchers and research groups to review the status of recognition, analysis and modeling of faces and gestures, to discuss the challenges that we are facing, and to explore future directions. Overall, 30 papers were selected from 90 submitted manuscripts. The topics of these papers range from feature representation, robust recognition, learning, and 3D modeling to psychology. In addition, two invited talks were given, by Prof. Kanade and Dr. Phillips. The technical program was organized into four oral sessions and two poster sessions. This workshop would not have been possible without the timely reviews provided by the members of the Technical Program Committee under a tight schedule. October 2005 Wenyi Zhao Shaogang Gong Xiaoou Tang. 
650 0 |a Computer science. 
650 0 |a Algorithms. 
650 0 |a Artificial intelligence. 
650 0 |a Computer graphics. 
650 0 |a Image processing. 
650 0 |a Pattern recognition. 
650 1 4 |a Computer Science. 
650 2 4 |a Pattern Recognition. 
650 2 4 |a Image Processing and Computer Vision. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
650 2 4 |a Computer Graphics. 
650 2 4 |a Algorithm Analysis and Problem Complexity. 
700 1 |a Zhao, Wenyi.  |e editor. 
700 1 |a Gong, Shaogang.  |e editor. 
700 1 |a Tang, Xiaoou.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540292296 
830 0 |a Lecture Notes in Computer Science,  |x 0302-9743 ;  |v 3723 
856 4 0 |u http://dx.doi.org/10.1007/11564386  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
912 |a ZDB-2-LNC 
950 |a Computer Science (Springer-11645)