Support Vector Machines: Theory and Applications

The support vector machine (SVM) has become one of the standard tools for machine learning and data mining. This carefully edited volume presents the state of the art of the mathematical foundation of SVM in statistical learning theory, as well as novel algorithms and applications. Support Vector Ma...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Wang, Lipo (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2005.
Σειρά:Studies in Fuzziness and Soft Computing, 177
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03345nam a22005415i 4500
001 978-3-540-32384-6
003 DE-He213
005 20151204173035.0
007 cr nn 008mamaa
008 100805s2005 gw | s |||| 0|eng d
020 |a 9783540323846  |9 978-3-540-32384-6 
024 7 |a 10.1007/b95439  |2 doi 
040 |d GrThAP 
050 4 |a QA75.5-76.95 
072 7 |a UY  |2 bicssc 
072 7 |a UYA  |2 bicssc 
072 7 |a COM014000  |2 bisacsh 
072 7 |a COM031000  |2 bisacsh 
082 0 4 |a 004.0151  |2 23 
245 1 0 |a Support Vector Machines: Theory and Applications  |h [electronic resource] /  |c edited by Lipo Wang. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2005. 
300 |a X, 431 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Fuzziness and Soft Computing,  |x 1434-9922 ;  |v 177 
505 0 |a From the contents: Support Vector Machines – An Introduction -- Multiple Model Estimation for Nonlinear Classification -- Componentwise Least Squares Support Vector Machines -- Active Support Vector Learning with Statistical Queries -- Local Learning vs. Global Learning: An Introduction to Maxi-Min Margin Machine -- Active-Set Methods for Support Vector Machines -- Theoretical and Practical Model Selection Methods for Support Vector Classifiers -- Adaptive Discriminant and Quasiconformal Kernel Nearest Neighbor Classification -- Improving the Performance of the Support Vector Machine: Two Geometrical Scaling Methods -- An Accelerated Robust Support Vector Machine Algorithm -- Fuzzy Support Vector Machines with Automatic Membership Setting -- Iterative Single Data Algorithm for Training Kernel Machines from Huge Data Sets: Theory and Performance -- Kernel Discriminant Learning with Application to Face Recognition -- Fast Color Texture-based Object Detection in Images: Application to License Plate Localization. 
520 |a The support vector machine (SVM) has become one of the standard tools for machine learning and data mining. This carefully edited volume presents the state of the art of the mathematical foundation of SVM in statistical learning theory, as well as novel algorithms and applications. Support Vector Machines provides a selection of numerous real-world applications, such as bioinformatics, text categorization, pattern recognition, and object detection, written by leading experts in the respective fields. 
650 0 |a Computer science. 
650 0 |a Computers. 
650 0 |a Artificial intelligence. 
650 0 |a Pattern recognition. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 1 4 |a Computer Science. 
650 2 4 |a Theory of Computation. 
650 2 4 |a Appl.Mathematics/Computational Methods of Engineering. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
650 2 4 |a Pattern Recognition. 
700 1 |a Wang, Lipo.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540243885 
830 0 |a Studies in Fuzziness and Soft Computing,  |x 1434-9922 ;  |v 177 
856 4 0 |u http://dx.doi.org/10.1007/b95439  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)