Macroscopic Transport Equations for Rarefied Gas Flows Approximation Methods in Kinetic Theory /

The well known transport laws of Navier-Stokes and Fourier fail for the simulation of processes on lengthscales in the order of the mean free path of a particle that is when the Knudsen number is not small enough. Thus, the proper simulation of flows in rarefied gases requires a more detailed descri...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Struchtrup, Henning (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2005.
Σειρά:Interaction of Mechanics and Mathematics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03536nam a22005775i 4500
001 978-3-540-32386-0
003 DE-He213
005 20151204155958.0
007 cr nn 008mamaa
008 100301s2005 gw | s |||| 0|eng d
020 |a 9783540323860  |9 978-3-540-32386-0 
024 7 |a 10.1007/3-540-32386-4  |2 doi 
040 |d GrThAP 
050 4 |a TJ265 
050 4 |a QC319.8-338.5 
072 7 |a TGMB  |2 bicssc 
072 7 |a SCI065000  |2 bisacsh 
082 0 4 |a 621.4021  |2 23 
100 1 |a Struchtrup, Henning.  |e author. 
245 1 0 |a Macroscopic Transport Equations for Rarefied Gas Flows  |h [electronic resource] :  |b Approximation Methods in Kinetic Theory /  |c by Henning Struchtrup. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2005. 
300 |a XIV, 258 p. 35 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Interaction of Mechanics and Mathematics,  |x 1860-6245 
505 0 |a Basic quantities and definitions -- The Boltzmann equation and its properties -- The Chapman-Enskog method -- Moment equations -- Grad’s moment method -- Regularization of Grad equations -- Order of magnitude approach -- Macroscopic transport equations for rarefied gas flows -- Stability and dispersion -- Shock structures -- Boundary value problems. 
520 |a The well known transport laws of Navier-Stokes and Fourier fail for the simulation of processes on lengthscales in the order of the mean free path of a particle that is when the Knudsen number is not small enough. Thus, the proper simulation of flows in rarefied gases requires a more detailed description. This book discusses classical and modern methods to derive macroscopic transport equations for rarefied gases from the Boltzmann equation, for small and moderate Knudsen numbers, i.e. at and above the Navier-Stokes-Fourier level. The main methods discussed are the classical Chapman-Enskog and Grad approaches, as well as the new order of magnitude method, which avoids the short-comings of the classical methods, but retains their benefits. The relations between the various methods are carefully examined, and the resulting equations are compared and tested for a variety of standard problems. The book develops the topic starting from the basic description of an ideal gas, over the derivation of the Boltzmann equation, towards the various methods for deriving macroscopic transport equations, and the test problems which include stability of the equations, shock waves, and Couette flow. 
650 0 |a Engineering. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 0 |a Thermodynamics. 
650 0 |a Statistical physics. 
650 0 |a Dynamical systems. 
650 0 |a Heat engineering. 
650 0 |a Heat transfer. 
650 0 |a Mass transfer. 
650 1 4 |a Engineering. 
650 2 4 |a Engineering Thermodynamics, Heat and Mass Transfer. 
650 2 4 |a Applications of Mathematics. 
650 2 4 |a Statistical Physics, Dynamical Systems and Complexity. 
650 2 4 |a Thermodynamics. 
650 2 4 |a Engineering, general. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540245421 
830 0 |a Interaction of Mechanics and Mathematics,  |x 1860-6245 
856 4 0 |u http://dx.doi.org/10.1007/3-540-32386-4  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)