|
|
|
|
LEADER |
02737nam a22004815i 4500 |
001 |
978-3-540-32388-4 |
003 |
DE-He213 |
005 |
20151204184221.0 |
007 |
cr nn 008mamaa |
008 |
100301s2005 gw | s |||| 0|eng d |
020 |
|
|
|a 9783540323884
|9 978-3-540-32388-4
|
024 |
7 |
|
|a 10.1007/3-540-32388-0
|2 doi
|
040 |
|
|
|d GrThAP
|
050 |
|
4 |
|a QA273.A1-274.9
|
050 |
|
4 |
|a QA274-274.9
|
072 |
|
7 |
|a PBT
|2 bicssc
|
072 |
|
7 |
|a PBWL
|2 bicssc
|
072 |
|
7 |
|a MAT029000
|2 bisacsh
|
082 |
0 |
4 |
|a 519.2
|2 23
|
100 |
1 |
|
|a Buckley, James J.
|e author.
|
245 |
1 |
0 |
|a Fuzzy Probabilities
|h [electronic resource] :
|b New Approach and Applications /
|c by James J. Buckley.
|
264 |
|
1 |
|a Berlin, Heidelberg :
|b Springer Berlin Heidelberg,
|c 2005.
|
300 |
|
|
|a XI, 168 p.
|b online resource.
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
347 |
|
|
|a text file
|b PDF
|2 rda
|
490 |
1 |
|
|a Studies in Fuzziness and Soft Computing,
|x 1434-9922 ;
|v 115
|
505 |
0 |
|
|a Fuzzy Sets -- Fuzzy Probability Theory -- Discrete Fuzzy Random Variables -- Fuzzy Queuing Theory -- Fuzzy Markov Chains -- Fuzzy Decisions Under Risk -- Continuous Fuzzy Random Variables -- Fuzzy Inventory Control -- Joint Fuzzy Probability Distributions -- Applications of Joint Distributions -- Functions of a Fuzzy Random Variable -- Functions of Fuzzy Random Variables -- Law of Large Numbers -- Sums of Fuzzy Random Variables -- Conclusions and Future Research.
|
520 |
|
|
|a In probability and statistics we often have to estimate probabilities and parameters in probability distributions using a random sample. Instead of using a point estimate calculated from the data we propose using fuzzy numbers which are constructed from a set of confidence intervals. In probability calculations we apply constrained fuzzy arithmetic because probabilities must add to one. Fuzzy random variables have fuzzy distributions. A fuzzy normal random variable has the normal distribution with fuzzy number mean and variance. Applications are to queuing theory, Markov chains, inventory control, decision theory and reliability theory.
|
650 |
|
0 |
|a Mathematics.
|
650 |
|
0 |
|a Artificial intelligence.
|
650 |
|
0 |
|a Probabilities.
|
650 |
1 |
4 |
|a Mathematics.
|
650 |
2 |
4 |
|a Probability Theory and Stochastic Processes.
|
650 |
2 |
4 |
|a Artificial Intelligence (incl. Robotics).
|
710 |
2 |
|
|a SpringerLink (Online service)
|
773 |
0 |
|
|t Springer eBooks
|
776 |
0 |
8 |
|i Printed edition:
|z 9783540250333
|
830 |
|
0 |
|a Studies in Fuzziness and Soft Computing,
|x 1434-9922 ;
|v 115
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1007/3-540-32388-0
|z Full Text via HEAL-Link
|
912 |
|
|
|a ZDB-2-ENG
|
950 |
|
|
|a Engineering (Springer-11647)
|