Foundations of Data Mining and knowledge Discovery

Foundations of Data Mining and Knowledge Discovery contains the latest results and new directions in data mining research. Data mining, which integrates various technologies, including computational intelligence, database and knowledge management, machine learning, soft computing, and statistics, is...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Young Lin, Tsau (Επιμελητής έκδοσης), Ohsuga, Setsuo (Επιμελητής έκδοσης), Liau, Churn-Jung (Επιμελητής έκδοσης), Hu, Xiaohua (Επιμελητής έκδοσης), Tsumoto, Shusaku (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2005.
Σειρά:Studies in Computational Intelligence, 6
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • From the contents: Part I Foundations of Data Mining; Knowledge Discovery as Translation; Mathematical Foundation of Association Rules – Mining Associations by Solving Integral Linear Inequalities; Comparative Study of Sequential Pattern Mining Models; Designing Robust Regression Models; A Probabilistic Logic-based Framework for Characterizing Knowledge Discovery in Databases; A Careful Look at the Use of Statistical Methodology in Data Mining; Justification and Hypothesis Selection in Data Mining
  • Part II Methods of Data Mining; A Comparative Investigation on Model Selection in Binary Factor Analysis; Extraction of Generalized Rules with Automated Attribute Abstraction; Decision Making Based on Hybrid of Multi-knowledge and Naïve Bayes Classifier; First-Order Logic Based Formalism for Temporal Data Mining; An Alternative Approach to Mining Association Rules
  • Part III General Knowledge Discovery; Posting Act Tagging Using Transformation-Based Learning.