Extending the Scalability of Linkage Learning Genetic Algorithms Theory & Practice /

Genetic algorithms (GAs) are powerful search techniques based on principles of evolution and widely applied to solve problems in many disciplines. However, unable to learn linkage among genes, most GAs employed in practice nowadays suffer from the linkage problem, which refers to the need of appropr...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Chen, Ying-ping (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2006.
Σειρά:Studies in Fuzziness and Soft Computing, 190
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • Introduction
  • Genetic Algorithms and Genetic Linkage
  • Genetic Linkage Learning Techniques
  • Linkage Learning Genetic Algorithm
  • Preliminaries: Assumptions and the Test Problem
  • A First Improvement: Using Promoters
  • Convergence Time for the Linkage Learning Genetic Algorithm.-Introducing Subchromosome Representations
  • Conclusions.