Mathematical Foundation of Turbulent Viscous Flows Lectures given at the C.I.M.E. Summer School held in Martina Franca, Italy, SEptember 1-5, 2003 /

Five leading specialists reflect on different and complementary approaches to fundamental questions in the study of the Fluid Mechanics and Gas Dynamics equations. Constantin presents the Euler equations of ideal incompressible fluids and discusses the blow-up problem for the Navier-Stokes equations...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Cannone, Marco (Επιμελητής έκδοσης), Miyakawa, Tetsuro (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2006.
Σειρά:Lecture Notes in Mathematics, 1871
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02946nam a22004455i 4500
001 978-3-540-32454-6
003 DE-He213
005 20160817102019.0
007 cr nn 008mamaa
008 100805s2006 gw | s |||| 0|eng d
020 |a 9783540324546  |9 978-3-540-32454-6 
024 7 |a 10.1007/b11545989  |2 doi 
040 |d GrThAP 
050 4 |a QA370-380 
072 7 |a PBKJ  |2 bicssc 
072 7 |a MAT007000  |2 bisacsh 
082 0 4 |a 515.353  |2 23 
245 1 0 |a Mathematical Foundation of Turbulent Viscous Flows  |h [electronic resource] :  |b Lectures given at the C.I.M.E. Summer School held in Martina Franca, Italy, SEptember 1-5, 2003 /  |c edited by Marco Cannone, Tetsuro Miyakawa. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2006. 
300 |a IX, 264 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1871 
520 |a Five leading specialists reflect on different and complementary approaches to fundamental questions in the study of the Fluid Mechanics and Gas Dynamics equations. Constantin presents the Euler equations of ideal incompressible fluids and discusses the blow-up problem for the Navier-Stokes equations of viscous fluids, describing some of the major mathematical questions of turbulence theory. These questions are connected to the Caffarelli-Kohn-Nirenberg theory of singularities for the incompressible Navier-Stokes equations that is explained in Gallavotti's lectures. Kazhikhov introduces the theory of strong approximation of weak limits via the method of averaging, applied to Navier-Stokes equations. Y. Meyer focuses on several nonlinear evolution equations - in particular Navier-Stokes - and some related unexpected cancellation properties, either imposed on the initial condition, or satisfied by the solution itself, whenever it is localized in space or in time variable. Ukai presents the asymptotic analysis theory of fluid equations. He discusses the Cauchy-Kovalevskaya technique for the Boltzmann-Grad limit of the Newtonian equation, the multi-scale analysis, giving the compressible and incompressible limits of the Boltzmann equation, and the analysis of their initial layers. 
650 0 |a Mathematics. 
650 0 |a Partial differential equations. 
650 1 4 |a Mathematics. 
650 2 4 |a Partial Differential Equations. 
700 1 |a Cannone, Marco.  |e editor. 
700 1 |a Miyakawa, Tetsuro.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540285861 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1871 
856 4 0 |u http://dx.doi.org/10.1007/b11545989  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (Springer-11649)