Towards a New Evolutionary Computation Advances in the Estimation of Distribution Algorithms /

This is a nicely edited volume on Estimation of Distribution Algorithms (EDAs) by leading researchers on this important topic. It covers a wide range of topics in EDAs, from theoretical analysis to experimental studies, from single objective to multi-objective optimisation, and from parallel EDAs to...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Lozano, Jose A. (Επιμελητής έκδοσης), Larrañaga, Pedro (Επιμελητής έκδοσης), Inza, Iñaki (Επιμελητής έκδοσης), Bengoetxea, Endika (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2006.
Σειρά:Studies in Fuzziness and Soft Computing, 192
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04441nam a22005535i 4500
001 978-3-540-32494-2
003 DE-He213
005 20151204182741.0
007 cr nn 008mamaa
008 100301s2006 gw | s |||| 0|eng d
020 |a 9783540324942  |9 978-3-540-32494-2 
024 7 |a 10.1007/3-540-32494-1  |2 doi 
040 |d GrThAP 
050 4 |a TA329-348 
050 4 |a TA640-643 
072 7 |a TBJ  |2 bicssc 
072 7 |a MAT003000  |2 bisacsh 
082 0 4 |a 519  |2 23 
245 1 0 |a Towards a New Evolutionary Computation  |h [electronic resource] :  |b Advances in the Estimation of Distribution Algorithms /  |c edited by Jose A. Lozano, Pedro Larrañaga, Iñaki Inza, Endika Bengoetxea. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2006. 
300 |a XVI, 294 p. 109 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Fuzziness and Soft Computing,  |x 1434-9922 ;  |v 192 
505 0 |a Linking Entropy to Estimation of Distribution Algorithms -- Entropy-based Convergence Measurement in Discrete Estimation of Distribution Algorithms -- Real-coded Bayesian Optimization Algorithm -- The CMA Evolution Strategy: A Comparing Review -- Estimation of Distribution Programming: EDA-based Approach to Program Generation -- Multi-objective Optimization with the Naive ID A -- A Parallel Island Model for Estimation of Distribution Algorithms -- GA-EDA: A New Hybrid Cooperative Search Evolutionary Algorithm -- Bayesian Classifiers in Optimization: An EDA-like Approach -- Feature Ranking Using an EDA-based Wrapper Approach -- Learning Linguistic Fuzzy Rules by Using Estimation of Distribution Algorithms as the Search Engine in the COR Methodology -- Estimation of Distribution Algorithm with 2-opt Local Search for the Quadratic Assignment Problem. 
520 |a This is a nicely edited volume on Estimation of Distribution Algorithms (EDAs) by leading researchers on this important topic. It covers a wide range of topics in EDAs, from theoretical analysis to experimental studies, from single objective to multi-objective optimisation, and from parallel EDAs to hybrid EDAs. It is a very useful book for everyone who is interested in EDAs, evolutionary computation or optimisation in general. Xin Yao, IEEE Fellow Editor-in-Chief, IEEE Transactions on Evolutionary Computation ______________________________________________________________ Estimation of Distribution Algorithms (EDAs) have "removed genetics" from Evolutionary Algorithms (EAs). However, both approaches (still) have a lot in common, and, for instance, each one could be argued to in fact include the other! Nevertheless, whereas some theoretical approaches that are specific to EDAs are being proposed, many practical issues are common to both fields, and, though proposed in the mid 90's only, EDAs are catching up fast now with EAs, following many research directions that have proved successful for the latter: opening to different search domains, hybridizing with other methods (be they OR techniques or EAs themselves!), going parallel, tackling difficult application problems, and the like. This book proposes an up-to-date snapshot of this rapidly moving field, and witnesses its maturity. It should hence be read ... rapidly, by anyone interested in either EDAs or EAs, or more generally in stochastic optimization. Marc Schoenauer Editor-in-Chief, Evolutionary Computation. 
650 0 |a Engineering. 
650 0 |a Computers. 
650 0 |a Artificial intelligence. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 1 4 |a Engineering. 
650 2 4 |a Appl.Mathematics/Computational Methods of Engineering. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
650 2 4 |a Computing Methodologies. 
650 2 4 |a Applications of Mathematics. 
700 1 |a Lozano, Jose A.  |e editor. 
700 1 |a Larrañaga, Pedro.  |e editor. 
700 1 |a Inza, Iñaki.  |e editor. 
700 1 |a Bengoetxea, Endika.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540290063 
830 0 |a Studies in Fuzziness and Soft Computing,  |x 1434-9922 ;  |v 192 
856 4 0 |u http://dx.doi.org/10.1007/3-540-32494-1  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)