Gene Expression Programming Mathematical Modeling by an Artificial Intelligence /

Cândida Ferreira thoroughly describes the basic ideas of gene expression programming (GEP) and numerous modifications to this powerful new algorithm. This monograph provides all the implementation details of GEP so that anyone with elementary programming skills will be able to implement it themselve...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Ferreira, Cândida (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2006.
Σειρά:Studies in Computational Intelligence, 21
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04548nam a22005415i 4500
001 978-3-540-32849-0
003 DE-He213
005 20151204142431.0
007 cr nn 008mamaa
008 100301s2006 gw | s |||| 0|eng d
020 |a 9783540328490  |9 978-3-540-32849-0 
024 7 |a 10.1007/3-540-32849-1  |2 doi 
040 |d GrThAP 
050 4 |a QA75.5-76.95 
072 7 |a UY  |2 bicssc 
072 7 |a UYA  |2 bicssc 
072 7 |a COM014000  |2 bisacsh 
072 7 |a COM031000  |2 bisacsh 
082 0 4 |a 004.0151  |2 23 
100 1 |a Ferreira, Cândida.  |e author. 
245 1 0 |a Gene Expression Programming  |h [electronic resource] :  |b Mathematical Modeling by an Artificial Intelligence /  |c by Cândida Ferreira. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2006. 
300 |a XX, 480 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Computational Intelligence,  |x 1860-949X ;  |v 21 
505 0 |a Introduction: The Biological Perspective -- The Entities of Gene Expression Programming -- The Basic Gene Expression Algorithm -- The Basic GEA in Problem Solving -- Numerical Constants and the GEP-RNC Algorithm -- Automatically Defined Functions in Problem Solving -- Polynomial Induction and Time Series Prediction -- Parameter Optimization -- Decision Tree Induction -- Design of Neural Networks -- Combinatorial Optimization -- Evolutionary Studies. 
520 |a Cândida Ferreira thoroughly describes the basic ideas of gene expression programming (GEP) and numerous modifications to this powerful new algorithm. This monograph provides all the implementation details of GEP so that anyone with elementary programming skills will be able to implement it themselves. The book also includes a self-contained introduction to this new exciting field of computational intelligence, including several new algorithms for decision tree induction, data mining, classifier systems, function finding, polynomial induction, times series prediction, evolution of linking functions, automatically defined functions, parameter optimization, logic synthesis, combinatorial optimization, and complete neural network induction. The book also discusses some important and controversial evolutionary topics that might be refreshing to both evolutionary computer scientists and biologists. This second edition has been substantially revised and extended with five new chapters, including a new chapter describing two new algorithms for inducing decision trees with nominal and numeric/mixed attributes. Cândida Ferreira thoroughly describes the basic ideas of gene expression programming (GEP) and numerous modifications to this powerful new algorithm. This monograph provides all the implementation details of GEP so that anyone with elementary programming skills will be able to implement it themselves. The book also includes a self-contained introduction to this new exciting field of computational intelligence, including several new algorithms for decision tree induction, data mining, classifier systems, function finding, polynomial induction, times series prediction, evolution of linking functions, automatically defined functions, parameter optimization, logic synthesis, combinatorial optimization, and complete neural network induction. The book also discusses some important and controversial evolutionary topics that might be refreshing to both evolutionary computer scientists and biologists. This second edition has been substantially revised and extended with five new chapters, including a new chapter describing two new algorithms for inducing decision trees with nominal and numeric/mixed attributes. 
650 0 |a Computer science. 
650 0 |a Computers. 
650 0 |a Artificial intelligence. 
650 0 |a Bioinformatics. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 1 4 |a Computer Science. 
650 2 4 |a Theory of Computation. 
650 2 4 |a Appl.Mathematics/Computational Methods of Engineering. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
650 2 4 |a Bioinformatics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540327967 
830 0 |a Studies in Computational Intelligence,  |x 1860-949X ;  |v 21 
856 4 0 |u http://dx.doi.org/10.1007/3-540-32849-1  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)