The Random-Cluster Model

The random-cluster model has emerged in recent years as a key tool in the mathematical study of ferromagnetism. It may be viewed as an extension of percolation to include Ising and Potts models, and its analysis is a mix of arguments from probability and geometry. This systematic study includes acco...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Grimmett, Geoffrey R. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2006.
Σειρά:Grundlehren der mathematischen Wissensch, 333
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02529nam a22004815i 4500
001 978-3-540-32891-9
003 DE-He213
005 20151103123510.0
007 cr nn 008mamaa
008 100301s2006 gw | s |||| 0|eng d
020 |a 9783540328919  |9 978-3-540-32891-9 
024 7 |a 10.1007/978-3-540-32891-9  |2 doi 
040 |d GrThAP 
050 4 |a QA273.A1-274.9 
050 4 |a QA274-274.9 
072 7 |a PBT  |2 bicssc 
072 7 |a PBWL  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
082 0 4 |a 519.2  |2 23 
100 1 |a Grimmett, Geoffrey R.  |e author. 
245 1 4 |a The Random-Cluster Model  |h [electronic resource] /  |c by Geoffrey R. Grimmett. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2006. 
300 |a XIII, 378 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Grundlehren der mathematischen Wissensch,  |x 0072-7830 ;  |v 333 
505 0 |a Random-Cluster Measures -- Monotonic Measures -- Fundamental Properties -- Infinite-Volume Measures -- Phase Transition -- In Two Dimensions -- Duality in Higher Dimensions -- Dynamics of Random-Cluster Models -- Flows in Poisson Graphs -- On Other Graphs -- Graphical Methods for Spin Systems. 
520 |a The random-cluster model has emerged in recent years as a key tool in the mathematical study of ferromagnetism. It may be viewed as an extension of percolation to include Ising and Potts models, and its analysis is a mix of arguments from probability and geometry. This systematic study includes accounts of the subcritical and supercritical phases, together with clear statements of important open problems. There is an extensive treatment of the first-order (discontinuous) phase transition, as well as a chapter devoted to applications of the random-cluster method to other models of statistical physics. 
650 0 |a Mathematics. 
650 0 |a Probabilities. 
650 0 |a Physics. 
650 1 4 |a Mathematics. 
650 2 4 |a Probability Theory and Stochastic Processes. 
650 2 4 |a Theoretical, Mathematical and Computational Physics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540328902 
830 0 |a Grundlehren der mathematischen Wissensch,  |x 0072-7830 ;  |v 333 
856 4 0 |u http://dx.doi.org/10.1007/978-3-540-32891-9  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)