Adaptive Business Intelligence

In the modern information era, managers must recognize the competitive opportunities represented by decision-support tools. Adaptive business intelligence systems combine prediction and optimization techniques to assist decision makers in complex, rapidly changing environments. These systems address...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Michalewicz, Zbigniew (Συγγραφέας), Schmidt, Martin (Συγγραφέας), Michalewicz, Matthew (Συγγραφέας), Chiriac, Constantin (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2006.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03989nam a22006135i 4500
001 978-3-540-32929-9
003 DE-He213
005 20151204163254.0
007 cr nn 008mamaa
008 100301s2006 gw | s |||| 0|eng d
020 |a 9783540329299  |9 978-3-540-32929-9 
024 7 |a 10.1007/978-3-540-32929-9  |2 doi 
040 |d GrThAP 
050 4 |a Q334-342 
050 4 |a TJ210.2-211.495 
072 7 |a UYQ  |2 bicssc 
072 7 |a TJFM1  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
082 0 4 |a 006.3  |2 23 
100 1 |a Michalewicz, Zbigniew.  |e author. 
245 1 0 |a Adaptive Business Intelligence  |h [electronic resource] /  |c by Zbigniew Michalewicz, Martin Schmidt, Matthew Michalewicz, Constantin Chiriac. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2006. 
300 |a XIII, 246 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Complex Business Problems -- Characteristics of Complex Business Problems -- An Extended Example: Car Distribution -- Adaptive Business Intelligence -- Prediction and Optimization -- Prediction Methods and Models -- Modern Optimization Techniques -- Fuzzy Logic -- Artificial Neural Networks -- Other Methods and Techniques -- Adaptive Business Intelligence -- Hybrid Systems and Adaptability -- Car Distribution System -- Applying Adaptive Business Intelligence -- Conclusions. 
520 |a In the modern information era, managers must recognize the competitive opportunities represented by decision-support tools. Adaptive business intelligence systems combine prediction and optimization techniques to assist decision makers in complex, rapidly changing environments. These systems address the fundamental questions: What is likely to happen in the future? And what is the best decision right now? Adaptive Business Intelligence includes elements of data mining, predictive modeling, forecasting, optimization, and adaptability. The authors have considerable academic research backgrounds in artificial intelligence and related fields, combined with years of practical consulting experience in businesses and industries worldwide. In this book they explain the science and application of numerous prediction and optimization techniques, as well as how these concepts can be used to develop adaptive systems. The techniques covered include linear regression, time-series forecasting, decision trees and tables, artificial neural networks, genetic programming, fuzzy systems, genetic algorithms, simulated annealing, tabu search, ant systems, and agent-based modeling. This book is suitable for business and IT managers who make decisions in complex industrial and service environments, nonspecialists who want to understand the science behind better predictions and decisions, and students and researchers who need a quick introduction to this field. 
650 0 |a Computer science. 
650 0 |a Operations research. 
650 0 |a Decision making. 
650 0 |a Information technology. 
650 0 |a Business  |x Data processing. 
650 0 |a Data mining. 
650 0 |a Computers. 
650 0 |a Artificial intelligence. 
650 0 |a Application software. 
650 1 4 |a Computer Science. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
650 2 4 |a IT in Business. 
650 2 4 |a Computing Methodologies. 
650 2 4 |a Operation Research/Decision Theory. 
650 2 4 |a Computer Applications. 
650 2 4 |a Data Mining and Knowledge Discovery. 
700 1 |a Schmidt, Martin.  |e author. 
700 1 |a Michalewicz, Matthew.  |e author. 
700 1 |a Chiriac, Constantin.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540329282 
856 4 0 |u http://dx.doi.org/10.1007/978-3-540-32929-9  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)