The Art of Random Walks

Einstein proved that the mean square displacement of Brownian motion is proportional to time. He also proved that the diffusion constant depends on the mass and on the conductivity (sometimes referred to Einstein’s relation). The main aim of this book is to reveal similar connections between the phy...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Telcs, András (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2006.
Σειρά:Lecture Notes in Mathematics, 1885
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02708nam a22004935i 4500
001 978-3-540-33028-8
003 DE-He213
005 20151123141727.0
007 cr nn 008mamaa
008 100301s2006 gw | s |||| 0|eng d
020 |a 9783540330288  |9 978-3-540-33028-8 
024 7 |a 10.1007/b134090  |2 doi 
040 |d GrThAP 
050 4 |a QA273.A1-274.9 
050 4 |a QA274-274.9 
072 7 |a PBT  |2 bicssc 
072 7 |a PBWL  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
082 0 4 |a 519.2  |2 23 
100 1 |a Telcs, András.  |e author. 
245 1 4 |a The Art of Random Walks  |h [electronic resource] /  |c by András Telcs. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2006. 
300 |a VII, 200 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1885 
505 0 |a Potential theory and isoperimetric inequalities -- Basic definitions and preliminaries -- Some elements of potential theory -- Isoperimetric inequalities -- Polynomial volume growth -- Local theory -- Motivation of the local approach -- Einstein relation -- Upper estimates -- Lower estimates -- Two-sided estimates -- Closing remarks -- Parabolic Harnack inequality -- Semi-local theory. 
520 |a Einstein proved that the mean square displacement of Brownian motion is proportional to time. He also proved that the diffusion constant depends on the mass and on the conductivity (sometimes referred to Einstein’s relation). The main aim of this book is to reveal similar connections between the physical and geometric properties of space and diffusion. This is done in the context of random walks in the absence of algebraic structure, local or global spatial symmetry or self-similarity. The author studies the heat diffusion at this general level and discusses the following topics: The multiplicative Einstein relation, Isoperimetric inequalities, Heat kernel estimates Elliptic and parabolic Harnack inequality. . 
650 0 |a Mathematics. 
650 0 |a Partial differential equations. 
650 0 |a Probabilities. 
650 1 4 |a Mathematics. 
650 2 4 |a Probability Theory and Stochastic Processes. 
650 2 4 |a Partial Differential Equations. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540330271 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1885 
856 4 0 |u http://dx.doi.org/10.1007/b134090  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (Springer-11649)