Learning and Adaption in Multi-Agent Systems First International Workshop, LAMAS 2005, Utrecht, The Netherlands, July 25, 2005, Revised Selected Papers /

This book contains selected and revised papers of the International Workshop on Lea- ing and Adaptation in Multi-Agent Systems (LAMAS 2005), held at the AAMAS 2005 Conference in Utrecht, The Netherlands, July 26. An important aspect in multi-agent systems (MASs) is that the environment evolves over...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Tuyls, Karl (Επιμελητής έκδοσης), Hoen, Pieter Jan’t (Επιμελητής έκδοσης), Verbeeck, Katja (Επιμελητής έκδοσης), Sen, Sandip (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2006.
Σειρά:Lecture Notes in Computer Science, 3898
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04333nam a22005295i 4500
001 978-3-540-33059-2
003 DE-He213
005 20151123145604.0
007 cr nn 008mamaa
008 100301s2006 gw | s |||| 0|eng d
020 |a 9783540330592  |9 978-3-540-33059-2 
024 7 |a 10.1007/11691839  |2 doi 
040 |d GrThAP 
050 4 |a Q334-342 
050 4 |a TJ210.2-211.495 
072 7 |a UYQ  |2 bicssc 
072 7 |a TJFM1  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
082 0 4 |a 006.3  |2 23 
245 1 0 |a Learning and Adaption in Multi-Agent Systems  |h [electronic resource] :  |b First International Workshop, LAMAS 2005, Utrecht, The Netherlands, July 25, 2005, Revised Selected Papers /  |c edited by Karl Tuyls, Pieter Jan’t Hoen, Katja Verbeeck, Sandip Sen. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2006. 
300 |a X, 217 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Computer Science,  |x 0302-9743 ;  |v 3898 
505 0 |a An Overview of Cooperative and Competitive Multiagent Learning -- Multi-robot Learning for Continuous Area Sweeping -- Learning Automata as a Basis for Multi Agent Reinforcement Learning -- Learning Pareto-optimal Solutions in 2x2 Conflict Games -- Unifying Convergence and No-Regret in Multiagent Learning -- Implicit Coordination in a Network of Social Drivers: The Role of Information in a Commuting Scenario -- Multiagent Traffic Management: Opportunities for Multiagent Learning -- Dealing with Errors in a Cooperative Multi-agent Learning System -- The Success and Failure of Tag-Mediated Evolution of Cooperation -- An Adaptive Approach for the Exploration-Exploitation Dilemma and Its Application to Economic Systems -- Efficient Reward Functions for Adaptive Multi-rover Systems -- Multi-agent Relational Reinforcement Learning -- Multi-type ACO for Light Path Protection. 
520 |a This book contains selected and revised papers of the International Workshop on Lea- ing and Adaptation in Multi-Agent Systems (LAMAS 2005), held at the AAMAS 2005 Conference in Utrecht, The Netherlands, July 26. An important aspect in multi-agent systems (MASs) is that the environment evolves over time, not only due to external environmental changes but also due to agent int- actions. For this reason it is important that an agent can learn, based on experience, and adapt its knowledge to make rational decisions and act in this changing environment autonomously. Machine learning techniques for single-agent frameworks are well established. Agents operate in uncertain environments and must be able to learn and act - tonomously. This task is, however, more complex when the agent interacts with other agents that have potentially different capabilities and goals. The single-agent case is structurally different from the multi-agent case due to the added dimension of dynamic interactions between the adaptive agents. Multi-agent learning, i.e., the ability of the agents to learn how to cooperate and compete, becomes crucial in many domains. Autonomous agents and multi-agent systems (AAMAS) is an emerging multi-disciplinary area encompassing computer science, software engineering, biology, as well as cognitive and social sciences. A t- oretical framework, in which rationality of learning and interacting agents can be - derstood, is still under development in MASs, although there have been promising ?rst results. 
650 0 |a Computer science. 
650 0 |a Computer communication systems. 
650 0 |a Artificial intelligence. 
650 1 4 |a Computer Science. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
650 2 4 |a Computer Communication Networks. 
700 1 |a Tuyls, Karl.  |e editor. 
700 1 |a Hoen, Pieter Jan’t.  |e editor. 
700 1 |a Verbeeck, Katja.  |e editor. 
700 1 |a Sen, Sandip.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540330530 
830 0 |a Lecture Notes in Computer Science,  |x 0302-9743 ;  |v 3898 
856 4 0 |u http://dx.doi.org/10.1007/11691839  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
912 |a ZDB-2-LNC 
950 |a Computer Science (Springer-11645)