Cyclotomic Fields and Zeta Values

Cyclotomic fields have always occupied a central place in number theory, and the so called "main conjecture" on cyclotomic fields is arguably the deepest and most beautiful theorem known about them. It is also the simplest example of a vast array of subsequent, unproven "main conjectu...

Full description

Bibliographic Details
Main Authors: Coates, J. (Author), Sujatha, R. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic eBook
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg, 2006.
Subjects:
Online Access:Full Text via HEAL-Link
LEADER 02610nam a22004215i 4500
001 978-3-540-33069-1
003 DE-He213
005 20140727030109.0
007 cr nn 008mamaa
008 100301s2006 gw | s |||| 0|eng d
020 |a 9783540330691  |9 978-3-540-33069-1 
024 7 |a 10.1007/978-3-540-33069-1  |2 doi 
040 |d GrThAP 
050 4 |a QA241-247.5 
072 7 |a PBH  |2 bicssc 
072 7 |a MAT022000  |2 bisacsh 
082 0 4 |a 512.7  |2 23 
100 1 |a Coates, J.  |e author. 
245 1 0 |a Cyclotomic Fields and Zeta Values  |h [electronic resource] /  |c by J. Coates, R. Sujatha. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2006. 
300 |a X, 116 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Cyclotomic Fields -- Local Units -- Iwasawa Algebras and p-adic Measures -- Cyclotomic Units and Iwasawa's Theorem -- Euler Systems -- Main Conjecture. 
520 |a Cyclotomic fields have always occupied a central place in number theory, and the so called "main conjecture" on cyclotomic fields is arguably the deepest and most beautiful theorem known about them. It is also the simplest example of a vast array of subsequent, unproven "main conjectures'' in modern arithmetic geometry involving the arithmetic behaviour of motives over p-adic Lie extensions of number fields. These main conjectures are concerned with what one might loosely call the exact formulae of number theory which conjecturally link the special values of zeta and L-functions to purely arithmetic expressions (the most celebrated example being the conjecture of Birch and Swinnerton-Dyer for elliptic curves). Written by two leading workers in the field, this short and elegant book presents in full detail the simplest proof of the "main conjecture'' for cyclotomic fields . Its motivation stems not only from the inherent beauty of the subject, but also from the wider arithmetic interest of these questions. The masterly exposition is intended to be accessible to both graduate students and non-experts in Iwasawa theory. 
650 0 |a Mathematics. 
650 0 |a Number theory. 
650 1 4 |a Mathematics. 
650 2 4 |a Number Theory. 
700 1 |a Sujatha, R.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540330684 
856 4 0 |u http://dx.doi.org/10.1007/978-3-540-33069-1  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)