Knowledge Discovery in Inductive Databases 4th International Workshop, KDID 2005, Porto, Portugal, October 3, 2005, Revised Selected and Invited Papers /

The4thInternationalWorkshoponKnowledgeDiscoveryinInductiveDatabases (KDID 2005) was held in Porto, Portugal, on October 3, 2005 in conjunction with the 16th European Conference on Machine Learning and the 9th European Conference on Principles and Practice of Knowledge Discovery in Databases. Ever si...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Bonchi, Francesco (Επιμελητής έκδοσης), Boulicaut, Jean-François (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2006.
Σειρά:Lecture Notes in Computer Science, 3933
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04282nam a22005175i 4500
001 978-3-540-33293-0
003 DE-He213
005 20170119123901.0
007 cr nn 008mamaa
008 100301s2006 gw | s |||| 0|eng d
020 |a 9783540332930  |9 978-3-540-33293-0 
024 7 |a 10.1007/11733492  |2 doi 
040 |d GrThAP 
050 4 |a QA76.9.D35 
072 7 |a UMB  |2 bicssc 
072 7 |a URY  |2 bicssc 
072 7 |a COM031000  |2 bisacsh 
082 0 4 |a 005.74  |2 23 
245 1 0 |a Knowledge Discovery in Inductive Databases  |h [electronic resource] :  |b 4th International Workshop, KDID 2005, Porto, Portugal, October 3, 2005, Revised Selected and Invited Papers /  |c edited by Francesco Bonchi, Jean-François Boulicaut. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2006. 
300 |a VIII, 252 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Computer Science,  |x 0302-9743 ;  |v 3933 
505 0 |a Invited Papers -- Data Mining in Inductive Databases -- Mining Databases and Data Streams with Query Languages and Rules -- Contributed Papers -- Memory-Aware Frequent k-Itemset Mining -- Constraint-Based Mining of Fault-Tolerant Patterns from Boolean Data -- Experiment Databases: A Novel Methodology for Experimental Research -- Quick Inclusion-Exclusion -- Towards Mining Frequent Queries in Star Schemes -- Inductive Databases in the Relational Model: The Data as the Bridge -- Transaction Databases, Frequent Itemsets, and Their Condensed Representations -- Multi-class Correlated Pattern Mining -- Shaping SQL-Based Frequent Pattern Mining Algorithms -- Exploiting Virtual Patterns for Automatically Pruning the Search Space -- Constraint Based Induction of Multi-objective Regression Trees -- Learning Predictive Clustering Rules. 
520 |a The4thInternationalWorkshoponKnowledgeDiscoveryinInductiveDatabases (KDID 2005) was held in Porto, Portugal, on October 3, 2005 in conjunction with the 16th European Conference on Machine Learning and the 9th European Conference on Principles and Practice of Knowledge Discovery in Databases. Ever since the start of the ?eld of data mining, it has been realized that the integration of the database technology into knowledge discovery processes was a crucial issue. This vision has been formalized into the inductive database perspective introduced by T. Imielinski and H. Mannila (CACM 1996, 39(11)). The main idea is to consider knowledge discovery as an extended querying p- cess for which relevant query languages are to be speci?ed. Therefore, inductive databases might contain not only the usual data but also inductive gener- izations (e. g. , patterns, models) holding within the data. Despite many recent developments, there is still a pressing need to understand the central issues in inductive databases. Constraint-based mining has been identi?ed as a core technology for inductive querying, and promising results have been obtained for rather simple types of patterns (e. g. , itemsets, sequential patterns). However, constraint-based mining of models remains a quite open issue. Also, coupling schemes between the available database technology and inductive querying p- posals are not yet well understood. Finally, the de?nition of a general purpose inductive query language is still an on-going quest. 
650 0 |a Computer science. 
650 0 |a Data structures (Computer science). 
650 0 |a Database management. 
650 0 |a Artificial intelligence. 
650 1 4 |a Computer Science. 
650 2 4 |a Data Structures, Cryptology and Information Theory. 
650 2 4 |a Database Management. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
700 1 |a Bonchi, Francesco.  |e editor. 
700 1 |a Boulicaut, Jean-François.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540332923 
830 0 |a Lecture Notes in Computer Science,  |x 0302-9743 ;  |v 3933 
856 4 0 |u http://dx.doi.org/10.1007/11733492  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
912 |a ZDB-2-LNC 
950 |a Computer Science (Springer-11645)