Splitting Deformations of Degenerations of Complex Curves Towards the Classification of Atoms of Degenerations, III /
The author develops a deformation theory for degenerations of complex curves; specifically, he treats deformations which induce splittings of the singular fiber of a degeneration. He constructs a deformation of the degeneration in such a way that a subdivisor is "barked" (peeled) off from...
Corporate Author: | |
---|---|
Other Authors: | |
Format: | Electronic eBook |
Language: | English |
Published: |
Berlin, Heidelberg :
Springer Berlin Heidelberg,
2006.
|
Series: | Lecture Notes in Mathematics,
1886 |
Subjects: | |
Online Access: | Full Text via HEAL-Link |
Summary: | The author develops a deformation theory for degenerations of complex curves; specifically, he treats deformations which induce splittings of the singular fiber of a degeneration. He constructs a deformation of the degeneration in such a way that a subdivisor is "barked" (peeled) off from the singular fiber. These "barking deformations" are related to deformations of surface singularities (in particular, cyclic quotient singularities) as well as the mapping class groups of Riemann surfaces (complex curves) via monodromies. Important applications, such as the classification of atomic degenerations, are also explained. |
---|---|
Physical Description: | XII, 594 p. 123 illus. online resource. |
ISBN: | 9783540333647 |
ISSN: | 0075-8434 ; |