Machine Learning Challenges. Evaluating Predictive Uncertainty, Visual Object Classification, and Recognising Tectual Entailment First PASCAL Machine Learning Challenges Workshop, MLCW 2005, Southampton, UK, April 11-13, 2005, Revised Selected Papers /

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Quiñonero-Candela, Joaquin (Επιμελητής έκδοσης), Dagan, Ido (Επιμελητής έκδοσης), Magnini, Bernardo (Επιμελητής έκδοσης), d’Alché-Buc, Florence (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2006.
Σειρά:Lecture Notes in Computer Science, 3944
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • Evaluating Predictive Uncertainty Challenge
  • Classification with Bayesian Neural Networks
  • A Pragmatic Bayesian Approach to Predictive Uncertainty
  • Many Are Better Than One: Improving Probabilistic Estimates from Decision Trees
  • Estimating Predictive Variances with Kernel Ridge Regression
  • Competitive Associative Nets and Cross-Validation for Estimating Predictive Uncertainty on Regression Problems
  • Lessons Learned in the Challenge: Making Predictions and Scoring Them
  • The 2005 PASCAL Visual Object Classes Challenge
  • The PASCAL Recognising Textual Entailment Challenge
  • Using Bleu-like Algorithms for the Automatic Recognition of Entailment
  • What Syntax Can Contribute in the Entailment Task
  • Combining Lexical Resources with Tree Edit Distance for Recognizing Textual Entailment
  • Textual Entailment Recognition Based on Dependency Analysis and WordNet
  • Learning Textual Entailment on a Distance Feature Space
  • An Inference Model for Semantic Entailment in Natural Language
  • A Lexical Alignment Model for Probabilistic Textual Entailment
  • Textual Entailment Recognition Using Inversion Transduction Grammars
  • Evaluating Semantic Evaluations: How RTE Measures Up
  • Partial Predicate Argument Structure Matching for Entailment Determination
  • VENSES – A Linguistically-Based System for Semantic Evaluation
  • Textual Entailment Recognition Using a Linguistically–Motivated Decision Tree Classifier
  • Recognizing Textual Entailment Via Atomic Propositions
  • Recognising Textual Entailment with Robust Logical Inference
  • Applying COGEX to Recognize Textual Entailment
  • Recognizing Textual Entailment: Is Word Similarity Enough?.