Machine Learning Challenges. Evaluating Predictive Uncertainty, Visual Object Classification, and Recognising Tectual Entailment First PASCAL Machine Learning Challenges Workshop, MLCW 2005, Southampton, UK, April 11-13, 2005, Revised Selected Papers /
Συγγραφή απο Οργανισμό/Αρχή: | |
---|---|
Άλλοι συγγραφείς: | , , , |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Berlin, Heidelberg :
Springer Berlin Heidelberg,
2006.
|
Σειρά: | Lecture Notes in Computer Science,
3944 |
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- Evaluating Predictive Uncertainty Challenge
- Classification with Bayesian Neural Networks
- A Pragmatic Bayesian Approach to Predictive Uncertainty
- Many Are Better Than One: Improving Probabilistic Estimates from Decision Trees
- Estimating Predictive Variances with Kernel Ridge Regression
- Competitive Associative Nets and Cross-Validation for Estimating Predictive Uncertainty on Regression Problems
- Lessons Learned in the Challenge: Making Predictions and Scoring Them
- The 2005 PASCAL Visual Object Classes Challenge
- The PASCAL Recognising Textual Entailment Challenge
- Using Bleu-like Algorithms for the Automatic Recognition of Entailment
- What Syntax Can Contribute in the Entailment Task
- Combining Lexical Resources with Tree Edit Distance for Recognizing Textual Entailment
- Textual Entailment Recognition Based on Dependency Analysis and WordNet
- Learning Textual Entailment on a Distance Feature Space
- An Inference Model for Semantic Entailment in Natural Language
- A Lexical Alignment Model for Probabilistic Textual Entailment
- Textual Entailment Recognition Using Inversion Transduction Grammars
- Evaluating Semantic Evaluations: How RTE Measures Up
- Partial Predicate Argument Structure Matching for Entailment Determination
- VENSES – A Linguistically-Based System for Semantic Evaluation
- Textual Entailment Recognition Using a Linguistically–Motivated Decision Tree Classifier
- Recognizing Textual Entailment Via Atomic Propositions
- Recognising Textual Entailment with Robust Logical Inference
- Applying COGEX to Recognize Textual Entailment
- Recognizing Textual Entailment: Is Word Similarity Enough?.