Innovations in Machine Learning Theory and Applications /

Machine learning is currently one of the most rapidly growing areas of research in computer science. In compiling this volume we have brought together contributions from some of the most prestigious researchers in this field. This book covers the three main learning systems; symbolic learning, neura...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Holmes, Dawn E. (Επιμελητής έκδοσης), Jain, Lakhmi C. (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2006.
Σειρά:Studies in Fuzziness and Soft Computing, 194
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • A Bayesian Approach to Causal Discovery
  • A Tutorial on Learning Causal Influence
  • Learning Based Programming
  • N-1 Experiments Suffice to Determine the Causal Relations Among N Variables
  • Support Vector Inductive Logic Programming
  • Neural Probabilistic Language Models
  • Computational Grammatical Inference
  • On Kernel Target Alignment
  • The Structure of Version Space.