Open Quantum Systems II The Markovian Approach /

Understanding dissipative dynamics of open quantum systems remains a challenge in mathematical physics. This problem is relevant in various areas of fundamental and applied physics. From a mathematical point of view, it involves a large body of knowledge. Significant progress in the understanding of...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Attal, Stéphane (Επιμελητής έκδοσης), Joye, Alain (Επιμελητής έκδοσης), Pillet, Claude-Alain (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2006.
Σειρά:Lecture Notes in Mathematics, 1881
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03673nam a22005655i 4500
001 978-3-540-33966-3
003 DE-He213
005 20151123194727.0
007 cr nn 008mamaa
008 100301s2006 gw | s |||| 0|eng d
020 |a 9783540339663  |9 978-3-540-33966-3 
024 7 |a 10.1007/b128451  |2 doi 
040 |d GrThAP 
050 4 |a QA313 
072 7 |a PBWR  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
082 0 4 |a 515.39  |2 23 
082 0 4 |a 515.48  |2 23 
245 1 0 |a Open Quantum Systems II  |h [electronic resource] :  |b The Markovian Approach /  |c edited by Stéphane Attal, Alain Joye, Claude-Alain Pillet. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2006. 
300 |a XVI, 244 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1881 
505 0 |a Ergodic Properties of Markov Processes -- Open Classical Systems -- Quantum Noises -- Complete Positivity and the Markov structure of Open Quantum Systems -- Quantum Stochastic Differential Equations and Dilation of Completely Positive Semigroups. 
520 |a Understanding dissipative dynamics of open quantum systems remains a challenge in mathematical physics. This problem is relevant in various areas of fundamental and applied physics. From a mathematical point of view, it involves a large body of knowledge. Significant progress in the understanding of such systems has been made during the last decade. These books present in a self-contained way the mathematical theories involved in the modeling of such phenomena. They describe physically relevant models, develop their mathematical analysis and derive their physical implications. In Volume I the Hamiltonian description of quantum open systems is discussed. This includes an introduction to quantum statistical mechanics and its operator algebraic formulation, modular theory, spectral analysis and their applications to quantum dynamical systems. Volume II is dedicated to the Markovian formalism of classical and quantum open systems. A complete exposition of noise theory, Markov processes and stochastic differential equations, both in the classical and the quantum context, is provided. These mathematical tools are put into perspective with physical motivations and applications. Volume III is devoted to recent developments and applications. The topics discussed include the non-equilibrium properties of open quantum systems, the Fermi Golden Rule and weak coupling limit, quantum irreversibility and decoherence, qualitative behaviour of quantum Markov semigroups and continual quantum measurements. 
650 0 |a Mathematics. 
650 0 |a Dynamics. 
650 0 |a Ergodic theory. 
650 0 |a Operator theory. 
650 0 |a Probabilities. 
650 0 |a Physics. 
650 1 4 |a Mathematics. 
650 2 4 |a Dynamical Systems and Ergodic Theory. 
650 2 4 |a Theoretical, Mathematical and Computational Physics. 
650 2 4 |a Probability Theory and Stochastic Processes. 
650 2 4 |a Operator Theory. 
700 1 |a Attal, Stéphane.  |e editor. 
700 1 |a Joye, Alain.  |e editor. 
700 1 |a Pillet, Claude-Alain.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540309925 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1881 
856 4 0 |u http://dx.doi.org/10.1007/b128451  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (Springer-11649)