Subspace, Latent Structure and Feature Selection Statistical and Optimization Perspectives Workshop, SLSFS 2005, Bohinj, Slovenia, February 23-25, 2005, Revised Selected Papers /

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Saunders, Craig (Επιμελητής έκδοσης), Grobelnik, Marko (Επιμελητής έκδοσης), Gunn, Steve (Επιμελητής έκδοσης), Shawe-Taylor, John (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2006.
Σειρά:Lecture Notes in Computer Science, 3940
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03141nam a22005895i 4500
001 978-3-540-34138-3
003 DE-He213
005 20170130122055.0
007 cr nn 008mamaa
008 100301s2006 gw | s |||| 0|eng d
020 |a 9783540341383  |9 978-3-540-34138-3 
024 7 |a 10.1007/11752790  |2 doi 
040 |d GrThAP 
050 4 |a QA76.9.A43 
072 7 |a UMB  |2 bicssc 
072 7 |a COM051300  |2 bisacsh 
082 0 4 |a 005.1  |2 23 
245 1 0 |a Subspace, Latent Structure and Feature Selection  |h [electronic resource] :  |b Statistical and Optimization Perspectives Workshop, SLSFS 2005, Bohinj, Slovenia, February 23-25, 2005, Revised Selected Papers /  |c edited by Craig Saunders, Marko Grobelnik, Steve Gunn, John Shawe-Taylor. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2006. 
300 |a X, 209 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Computer Science,  |x 0302-9743 ;  |v 3940 
505 0 |a Invited Contributions -- Discrete Component Analysis -- Overview and Recent Advances in Partial Least Squares -- Random Projection, Margins, Kernels, and Feature-Selection -- Some Aspects of Latent Structure Analysis -- Feature Selection for Dimensionality Reduction -- Contributed Papers -- Auxiliary Variational Information Maximization for Dimensionality Reduction -- Constructing Visual Models with a Latent Space Approach -- Is Feature Selection Still Necessary? -- Class-Specific Subspace Discriminant Analysis for High-Dimensional Data -- Incorporating Constraints and Prior Knowledge into Factorization Algorithms – An Application to 3D Recovery -- A Simple Feature Extraction for High Dimensional Image Representations -- Identifying Feature Relevance Using a Random Forest -- Generalization Bounds for Subspace Selection and Hyperbolic PCA -- Less Biased Measurement of Feature Selection Benefits. 
650 0 |a Computer science. 
650 0 |a Computers. 
650 0 |a Algorithms. 
650 0 |a Mathematical statistics. 
650 0 |a Artificial intelligence. 
650 0 |a Image processing. 
650 0 |a Pattern recognition. 
650 1 4 |a Computer Science. 
650 2 4 |a Algorithm Analysis and Problem Complexity. 
650 2 4 |a Probability and Statistics in Computer Science. 
650 2 4 |a Computation by Abstract Devices. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
650 2 4 |a Image Processing and Computer Vision. 
650 2 4 |a Pattern Recognition. 
700 1 |a Saunders, Craig.  |e editor. 
700 1 |a Grobelnik, Marko.  |e editor. 
700 1 |a Gunn, Steve.  |e editor. 
700 1 |a Shawe-Taylor, John.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540341376 
830 0 |a Lecture Notes in Computer Science,  |x 0302-9743 ;  |v 3940 
856 4 0 |u http://dx.doi.org/10.1007/11752790  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
912 |a ZDB-2-LNC 
950 |a Computer Science (Springer-11645)