Subspace, Latent Structure and Feature Selection Statistical and Optimization Perspectives Workshop, SLSFS 2005, Bohinj, Slovenia, February 23-25, 2005, Revised Selected Papers /
Συγγραφή απο Οργανισμό/Αρχή: | |
---|---|
Άλλοι συγγραφείς: | , , , |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Berlin, Heidelberg :
Springer Berlin Heidelberg : Imprint: Springer,
2006.
|
Σειρά: | Lecture Notes in Computer Science,
3940 |
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- Invited Contributions
- Discrete Component Analysis
- Overview and Recent Advances in Partial Least Squares
- Random Projection, Margins, Kernels, and Feature-Selection
- Some Aspects of Latent Structure Analysis
- Feature Selection for Dimensionality Reduction
- Contributed Papers
- Auxiliary Variational Information Maximization for Dimensionality Reduction
- Constructing Visual Models with a Latent Space Approach
- Is Feature Selection Still Necessary?
- Class-Specific Subspace Discriminant Analysis for High-Dimensional Data
- Incorporating Constraints and Prior Knowledge into Factorization Algorithms – An Application to 3D Recovery
- A Simple Feature Extraction for High Dimensional Image Representations
- Identifying Feature Relevance Using a Random Forest
- Generalization Bounds for Subspace Selection and Hyperbolic PCA
- Less Biased Measurement of Feature Selection Benefits.