Subspace, Latent Structure and Feature Selection Statistical and Optimization Perspectives Workshop, SLSFS 2005, Bohinj, Slovenia, February 23-25, 2005, Revised Selected Papers /

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Saunders, Craig (Επιμελητής έκδοσης), Grobelnik, Marko (Επιμελητής έκδοσης), Gunn, Steve (Επιμελητής έκδοσης), Shawe-Taylor, John (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2006.
Σειρά:Lecture Notes in Computer Science, 3940
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • Invited Contributions
  • Discrete Component Analysis
  • Overview and Recent Advances in Partial Least Squares
  • Random Projection, Margins, Kernels, and Feature-Selection
  • Some Aspects of Latent Structure Analysis
  • Feature Selection for Dimensionality Reduction
  • Contributed Papers
  • Auxiliary Variational Information Maximization for Dimensionality Reduction
  • Constructing Visual Models with a Latent Space Approach
  • Is Feature Selection Still Necessary?
  • Class-Specific Subspace Discriminant Analysis for High-Dimensional Data
  • Incorporating Constraints and Prior Knowledge into Factorization Algorithms – An Application to 3D Recovery
  • A Simple Feature Extraction for High Dimensional Image Representations
  • Identifying Feature Relevance Using a Random Forest
  • Generalization Bounds for Subspace Selection and Hyperbolic PCA
  • Less Biased Measurement of Feature Selection Benefits.