|
|
|
|
LEADER |
03251nam a22005055i 4500 |
001 |
978-3-540-34170-3 |
003 |
DE-He213 |
005 |
20151204180447.0 |
007 |
cr nn 008mamaa |
008 |
100301s2006 gw | s |||| 0|eng d |
020 |
|
|
|a 9783540341703
|9 978-3-540-34170-3
|
024 |
7 |
|
|a 10.1007/978-3-540-34170-3
|2 doi
|
040 |
|
|
|d GrThAP
|
050 |
|
4 |
|a QA75.5-76.95
|
072 |
|
7 |
|a UY
|2 bicssc
|
072 |
|
7 |
|a UYA
|2 bicssc
|
072 |
|
7 |
|a COM014000
|2 bisacsh
|
072 |
|
7 |
|a COM031000
|2 bisacsh
|
082 |
0 |
4 |
|a 004.0151
|2 23
|
100 |
1 |
|
|a Kaburlasos, Vassilis G.
|e author.
|
245 |
1 |
0 |
|a Towards a Unified Modeling and Knowledge-Representation based on Lattice Theory
|h [electronic resource] :
|b Computational Intelligence and Soft Computing Applications /
|c by Vassilis G. Kaburlasos.
|
264 |
|
1 |
|a Berlin, Heidelberg :
|b Springer Berlin Heidelberg,
|c 2006.
|
300 |
|
|
|a XXII, 245 p.
|b online resource.
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
347 |
|
|
|a text file
|b PDF
|2 rda
|
505 |
0 |
|
|a The Context -- Origins in Context -- Relevant Literature Review -- Theory and Algorithms -- Novel Mathematical Background -- Real-World Grounding -- Knowledge Representation -- The Modeling Problem and its Formulation -- Algorithms for Clustering, Classification, and Regression -- Applications and Comparisons -- Numeric Data Applications -- Nonnumeric Data Applications -- Connections with Established Paradigms -- Conclusion -- Implementation Issues -- Discussion.
|
520 |
|
|
|a By ‘model’ we mean a mathematical description of a world aspect. With the proliferation of computers a variety of modeling paradigms emerged under computational intelligence and soft computing. An advancing technology is currently fragmented due, as well, to the need to cope with different types of data in different application domains. This research monograph proposes a unified, cross-fertilizing approach for knowledge-representation and modeling based on lattice theory. The emphasis is on clustering, classification, and regression applications. It is shown how rigorous analysis and design can be pursued in soft computing using conventional (hard computing) methods. Moreover, non-Turing computation can be pursued. The material here is multi-disciplinary based on our on-going research published in major scientific journals and conferences. Experimental results by various algorithms are demonstrated extensively. Relevant work by other authors is also presented both extensively and comparatively.
|
650 |
|
0 |
|a Computer science.
|
650 |
|
0 |
|a Computers.
|
650 |
|
0 |
|a Artificial intelligence.
|
650 |
|
0 |
|a Applied mathematics.
|
650 |
|
0 |
|a Engineering mathematics.
|
650 |
1 |
4 |
|a Computer Science.
|
650 |
2 |
4 |
|a Theory of Computation.
|
650 |
2 |
4 |
|a Artificial Intelligence (incl. Robotics).
|
650 |
2 |
4 |
|a Appl.Mathematics/Computational Methods of Engineering.
|
650 |
2 |
4 |
|a Applications of Mathematics.
|
710 |
2 |
|
|a SpringerLink (Online service)
|
773 |
0 |
|
|t Springer eBooks
|
776 |
0 |
8 |
|i Printed edition:
|z 9783540341697
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1007/978-3-540-34170-3
|z Full Text via HEAL-Link
|
912 |
|
|
|a ZDB-2-ENG
|
950 |
|
|
|a Engineering (Springer-11647)
|