Measure Theory

Measure theory is a classical area of mathematics that continues intensive development and has fruitful connections with most other fields of mathematics as well as important applications in physics. This book gives a systematic presentation of modern measure theory as it has developed over the past...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Bogachev, Vladimir I. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2007.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03411nam a22004935i 4500
001 978-3-540-34514-5
003 DE-He213
005 20151204144848.0
007 cr nn 008mamaa
008 100301s2007 gw | s |||| 0|eng d
020 |a 9783540345145  |9 978-3-540-34514-5 
024 7 |a 10.1007/978-3-540-34514-5  |2 doi 
040 |d GrThAP 
050 4 |a QA299.6-433 
072 7 |a PBK  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
082 0 4 |a 515  |2 23 
100 1 |a Bogachev, Vladimir I.  |e author. 
245 1 0 |a Measure Theory  |h [electronic resource] /  |c by Vladimir I. Bogachev. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2007. 
300 |a XXX, 1075 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Constructions and extensions of measures -- The Lebesgue integral -- Operations on measures and functions -- The spaces Lp and spaces of measures -- Connections between the integral and derivative -- Borel, Baire and Souslin sets -- Measures on topological spaces -- Weak convergence of measure -- Transformations of measures and isomorphisms -- Conditional measures and conditional. 
520 |a Measure theory is a classical area of mathematics that continues intensive development and has fruitful connections with most other fields of mathematics as well as important applications in physics. This book gives a systematic presentation of modern measure theory as it has developed over the past century and offers three levels of presentation: a standard university graduate course, an advanced study containing some complements to the basic course (the material of this level corresponds to a variety of special courses), and, finally, more specialized topics partly covered by more than 850 exercises. Bibliographical and historical comments and an extensive bibliography with 2000 works covering more than a century are provided. Volume 1 is devoted to the classical theory of measure and integral. Whereas the first volume presents the ideas that go back mainly to Lebesgue, the second volume is to a large extent the result of the later development up to the recent years. The central subjects of Volume 2 are: transformations of measures, conditional measures, and weak convergence of measures. These topics are closely interwoven and form the heart of modern measure theory. The target readership includes graduate students interested in deeper knowledge of measure theory, instructors of courses in measure and integration theory, and researchers in all fields of mathematics. The book may serve as a source for many advanced courses or as a reference. 
650 0 |a Mathematics. 
650 0 |a Mathematical analysis. 
650 0 |a Analysis (Mathematics). 
650 0 |a Functional analysis. 
650 0 |a Measure theory. 
650 0 |a Probabilities. 
650 1 4 |a Mathematics. 
650 2 4 |a Analysis. 
650 2 4 |a Measure and Integration. 
650 2 4 |a Functional Analysis. 
650 2 4 |a Probability Theory and Stochastic Processes. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540345138 
856 4 0 |u http://dx.doi.org/10.1007/978-3-540-34514-5  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)