Stochastic Optimization

The search for optimal solutions pervades our daily lives. From the scientific point of view, optimization procedures play an eminent role whenever exact solutions to a given problem are not at hand or a compromise has to be sought, e.g. to obtain a sufficiently accurate solution within a given amou...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Schneider, Johannes Josef (Συγγραφέας), Kirkpatrick, Scott (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2006.
Σειρά:Scientific Computation,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04866nam a22005775i 4500
001 978-3-540-34560-2
003 DE-He213
005 20151204164824.0
007 cr nn 008mamaa
008 100301s2006 gw | s |||| 0|eng d
020 |a 9783540345602  |9 978-3-540-34560-2 
024 7 |a 10.1007/978-3-540-34560-2  |2 doi 
040 |d GrThAP 
050 4 |a QA75.5-76.95 
072 7 |a UMA  |2 bicssc 
072 7 |a COM014000  |2 bisacsh 
072 7 |a COM018000  |2 bisacsh 
082 0 4 |a 006  |2 23 
100 1 |a Schneider, Johannes Josef.  |e author. 
245 1 0 |a Stochastic Optimization  |h [electronic resource] /  |c by Johannes Josef Schneider, Scott Kirkpatrick. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2006. 
300 |a XVI, 568 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Scientific Computation,  |x 1434-8322 
505 0 |a Theory Overview of Stochastic Optimization Algorithms -- General Remarks -- Exact Optimization Algorithms for Simple Problems -- Exact Optimization Algorithms for Complex Problems -- Monte Carlo -- Overview of Optimization Heuristics -- Implementation of Constraints -- Parallelization Strategies -- Construction Heuristics -- Markovian Improvement Heuristics -- Local Search -- Ruin & Recreate -- Simulated Annealing -- Threshold Accepting and Other Algorithms Related to Simulated Annealing -- Changing the Energy Landscape -- Estimation of Expectation Values -- Cooling Techniques -- Estimation of Calculation Time Needed -- Weakening the Pure Markovian Approach -- Neural Networks -- Genetic Algorithms and Evolution Strategies -- Optimization Algorithms Inspired by Social Animals -- Optimization Algorithms Based on Multiagent Systems -- Tabu Search -- Histogram Algorithms -- Searching for Backbones -- Applications -- General Remarks -- The Traveling Salesman Problem -- The Traveling Salesman Problem -- Extensions of Traveling Salesman Problem -- Application of Construction Heuristics to TSP -- Local Search Concepts Applied to TSP -- Next Larger Moves Applied to TSP -- Ruin & Recreate Applied to TSP -- Application of Simulated Annealing to TSP -- Dependencies of SA Results on Moves and Cooling Process -- Application to TSP of Algorithms Related to Simulated Annealing -- Application of Search Space Smoothing to TSP -- Further Techniques Changing the Energy Landscape of a TSP -- Application of Neural Networks to TSP -- Application of Genetic Algorithms to TSP -- Social Animal Algorithms Applied to TSP -- Simulated Trading Applied to TSP -- Tabu Search Applied to TSP -- Application of History Algorithms to TSP -- Application of Searching for Backbones to TSP -- Simulating Various Types of Government with Searching for Backbones -- The Constraint Satisfaction Problem -- The Constraint Satisfaction Problem -- Construction Heuristics for CSP -- Random Local Iterative Search Heuristics -- Belief Propagation and Survey Propagation -- Outlook -- Future Outlook of Optimization Business. 
520 |a The search for optimal solutions pervades our daily lives. From the scientific point of view, optimization procedures play an eminent role whenever exact solutions to a given problem are not at hand or a compromise has to be sought, e.g. to obtain a sufficiently accurate solution within a given amount of time. This book addresses stochastic optimization procedures in a broad manner, giving an overview of the most relevant optimization philosophies in the first part. The second part deals with benchmark problems in depth, by applying in sequence a selection of optimization procedures to them. While having primarily scientists and students from the physical and engineering sciences in mind, this book addresses the larger community of all those wishing to learn about stochastic optimization techniques and how to use them. 
650 0 |a Computer science. 
650 0 |a Computers. 
650 0 |a Computer mathematics. 
650 0 |a Mathematical optimization. 
650 0 |a Probabilities. 
650 0 |a Physics. 
650 0 |a Computational intelligence. 
650 1 4 |a Computer Science. 
650 2 4 |a Computing Methodologies. 
650 2 4 |a Optimization. 
650 2 4 |a Probability Theory and Stochastic Processes. 
650 2 4 |a Numerical and Computational Physics. 
650 2 4 |a Computational Science and Engineering. 
650 2 4 |a Computational Intelligence. 
700 1 |a Kirkpatrick, Scott.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540345596 
830 0 |a Scientific Computation,  |x 1434-8322 
856 4 0 |u http://dx.doi.org/10.1007/978-3-540-34560-2  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)