Quantum Field Theory I: Basics in Mathematics and Physics A Bridge between Mathematicians and Physicists /

This is the first volume of a modern introduction to quantum field theory which addresses both mathematicians and physicists ranging from advanced undergraduate students to professional scientists. The book tries to bridge the existing gap between the different languages used by mathematicians and p...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Zeidler, Eberhard (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2006.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04213nam a22005295i 4500
001 978-3-540-34764-4
003 DE-He213
005 20151204175514.0
007 cr nn 008mamaa
008 100301s2006 gw | s |||| 0|eng d
020 |a 9783540347644  |9 978-3-540-34764-4 
024 7 |a 10.1007/978-3-540-34764-4  |2 doi 
040 |d GrThAP 
050 4 |a QC19.2-20.85 
072 7 |a PHU  |2 bicssc 
072 7 |a SCI040000  |2 bisacsh 
082 0 4 |a 530.1  |2 23 
100 1 |a Zeidler, Eberhard.  |e author. 
245 1 0 |a Quantum Field Theory I: Basics in Mathematics and Physics  |h [electronic resource] :  |b A Bridge between Mathematicians and Physicists /  |c by Eberhard Zeidler. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2006. 
300 |a XXIV, 1052 p. 94 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Prologue -- Historical Introduction -- Phenomenology of the Standard Model for Elementary Particles -- The Challenge of Different Scales in Nature -- Basic Techniques in Mathematics -- Analyticity -- A Glance at Topology -- Many-Particle Systems in Mathematics and Physics -- Rigorous Finite-Dimensional Magic Formulas of Quantum Field Theory -- Rigorous Finite-Dimensional Perturbation Theory -- Fermions and the Calculus for Grassmann Variables -- Infinite-Dimensional Hilbert Spaces -- Distributions and Green’s Functions -- Distributions and Physics -- Heuristic Magic Formulas of Quantum Field Theory -- Basic Strategies in Quantum Field Theory -- The Response Approach -- The Operator Approach -- Peculiarities of Gauge Theories -- A Panorama of the Literature. 
520 |a This is the first volume of a modern introduction to quantum field theory which addresses both mathematicians and physicists ranging from advanced undergraduate students to professional scientists. The book tries to bridge the existing gap between the different languages used by mathematicians and physicists. For students of mathematics it is shown that detailed knowledge of the physical background helps to motivate the mathematical subjects and to discover interesting interrelationships between quite different mathematical topics. For students of physics, fairly advanced mathematics is presented, which is beyond the usual curriculum in physics. It is the author's goal to present the state of the art of realizing Einstein's dream of a unified theory for the four fundamental forces in the universe (gravitational, electromagnetic, strong, and weak interaction). From the reviews: "… Quantum field theory is one of the great intellectual edifices in the history of human thought. … This volume differs from other books on quantum field theory in its greater emphasis on the interaction of physics with mathematics. … an impressive work of scholarship." (William G. Faris, SIAM Review, Vol. 50 (2), 2008) "… it is a fun book for practicing quantum field theorists to browse, and it may be similarly enjoyed by mathematical colleagues. Its ultimate value may lie in encouraging students to enter this challenging interdisciplinary area of mathematics and physics. Summing Up: Recommended. Upper-division undergraduates through faculty." (M. C. Ogilvie, CHOICE, Vol. 44 (9), May, 2007). 
650 0 |a Physics. 
650 0 |a Mathematical analysis. 
650 0 |a Analysis (Mathematics). 
650 0 |a Functional analysis. 
650 0 |a Partial differential equations. 
650 0 |a Elementary particles (Physics). 
650 0 |a Quantum field theory. 
650 1 4 |a Physics. 
650 2 4 |a Theoretical, Mathematical and Computational Physics. 
650 2 4 |a Analysis. 
650 2 4 |a Elementary Particles, Quantum Field Theory. 
650 2 4 |a Mathematical Methods in Physics. 
650 2 4 |a Functional Analysis. 
650 2 4 |a Partial Differential Equations. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540347620 
856 4 0 |u http://dx.doi.org/10.1007/978-3-540-34764-4  |z Full Text via HEAL-Link 
912 |a ZDB-2-PHA 
950 |a Physics and Astronomy (Springer-11651)