The Wulff Crystal in Ising and Percolation Models Ecole d'Eté de Probabilités de Saint-Flour XXXIV - 2004 /

This volume is a synopsis of recent works aiming at a mathematically rigorous justification of the phase coexistence phenomenon, starting from a microscopic model. It is intended to be self-contained. Those proofs that can be found only in research papers have been included, whereas results for whic...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Cerf, Raphaël (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Picard, Jean (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2006.
Σειρά:Lecture Notes in Mathematics, 1878
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02851nam a22005295i 4500
001 978-3-540-34806-1
003 DE-He213
005 20151204142006.0
007 cr nn 008mamaa
008 100301s2006 gw | s |||| 0|eng d
020 |a 9783540348061  |9 978-3-540-34806-1 
024 7 |a 10.1007/b128410  |2 doi 
040 |d GrThAP 
050 4 |a QA273.A1-274.9 
050 4 |a QA274-274.9 
072 7 |a PBT  |2 bicssc 
072 7 |a PBWL  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
082 0 4 |a 519.2  |2 23 
100 1 |a Cerf, Raphaël.  |e author. 
245 1 4 |a The Wulff Crystal in Ising and Percolation Models  |h [electronic resource] :  |b Ecole d'Eté de Probabilités de Saint-Flour XXXIV - 2004 /  |c by Raphaël Cerf ; edited by Jean Picard. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2006. 
300 |a XIV, 264 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1878 
505 0 |a Phase coexistence and subadditivity -- Presentation of the models -- Ising model -- Bernoulli percolation -- FK or random cluster model -- Main results -- The Wulff crystal -- Large deviation principles -- Large deviation theory -- Surface large deviation principles -- Volume large deviations -- Fundamental probabilistic estimates -- Coarse graining -- Decoupling -- Surface tension -- Interface estimate -- Basic geometric tools -- Sets of finite perimeter -- Surface energy -- The Wulff theorem -- Final steps of the proofs -- LDP for the cluster shapes -- Enhanced upper bound -- LDP for FK percolation -- LDP for Ising. 
520 |a This volume is a synopsis of recent works aiming at a mathematically rigorous justification of the phase coexistence phenomenon, starting from a microscopic model. It is intended to be self-contained. Those proofs that can be found only in research papers have been included, whereas results for which the proofs can be found in classical textbooks are only quoted. 
650 0 |a Mathematics. 
650 0 |a Calculus of variations. 
650 0 |a Probabilities. 
650 0 |a Physics. 
650 1 4 |a Mathematics. 
650 2 4 |a Probability Theory and Stochastic Processes. 
650 2 4 |a Theoretical, Mathematical and Computational Physics. 
650 2 4 |a Calculus of Variations and Optimal Control; Optimization. 
700 1 |a Picard, Jean.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540309888 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1878 
856 4 0 |u http://dx.doi.org/10.1007/b128410  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (Springer-11649)