The Lace Expansion and its Applications Ecole d'Eté de Probabilités de Saint-Flour XXXIV - 2004 /

The lace expansion is a powerful and flexible method for understanding the critical scaling of several models of interest in probability, statistical mechanics, and combinatorics, above their upper critical dimensions. These models include the self-avoiding walk, lattice trees and lattice animals, p...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Slade, Gordon (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Picard, Jean (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2006.
Σειρά:Lecture Notes in Mathematics, 1879
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02979nam a22005295i 4500
001 978-3-540-35518-2
003 DE-He213
005 20151204185109.0
007 cr nn 008mamaa
008 100301s2006 gw | s |||| 0|eng d
020 |a 9783540355182  |9 978-3-540-35518-2 
024 7 |a 10.1007/b128444  |2 doi 
040 |d GrThAP 
050 4 |a QA273.A1-274.9 
050 4 |a QA274-274.9 
072 7 |a PBT  |2 bicssc 
072 7 |a PBWL  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
082 0 4 |a 519.2  |2 23 
100 1 |a Slade, Gordon.  |e author. 
245 1 4 |a The Lace Expansion and its Applications  |h [electronic resource] :  |b Ecole d'Eté de Probabilités de Saint-Flour XXXIV - 2004 /  |c by Gordon Slade ; edited by Jean Picard. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2006. 
300 |a XIII, 233 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1879 
505 0 |a Simple Random Walk -- The Self-Avoiding Walk -- The Lace Expansion for the Self-Avoiding Walk -- Diagrammatic Estimates for the Self-Avoiding Walk -- Convergence for the Self-Avoiding Walk -- Further Results for the Self-Avoiding Walk -- Lattice Trees -- The Lace Expansion for Lattice Trees -- Percolation -- The Expansion for Percolation -- Results for Percolation -- Oriented Percolation -- Expansions for Oriented Percolation -- The Contact Process -- Branching Random Walk -- Integrated Super-Brownian Excursion -- Super-Brownian Motion. 
520 |a The lace expansion is a powerful and flexible method for understanding the critical scaling of several models of interest in probability, statistical mechanics, and combinatorics, above their upper critical dimensions. These models include the self-avoiding walk, lattice trees and lattice animals, percolation, oriented percolation, and the contact process. This volume provides a unified and extensive overview of the lace expansion and its applications to these models. Results include proofs of existence of critical exponents and construction of scaling limits. Often, the scaling limit is described in terms of super-Brownian motion. 
650 0 |a Mathematics. 
650 0 |a Probabilities. 
650 0 |a Combinatorics. 
650 0 |a Physics. 
650 1 4 |a Mathematics. 
650 2 4 |a Probability Theory and Stochastic Processes. 
650 2 4 |a Theoretical, Mathematical and Computational Physics. 
650 2 4 |a Combinatorics. 
700 1 |a Picard, Jean.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540311898 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1879 
856 4 0 |u http://dx.doi.org/10.1007/b128444  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (Springer-11649)