The Lace Expansion and its Applications Ecole d'Eté de Probabilités de Saint-Flour XXXIV - 2004 /
The lace expansion is a powerful and flexible method for understanding the critical scaling of several models of interest in probability, statistical mechanics, and combinatorics, above their upper critical dimensions. These models include the self-avoiding walk, lattice trees and lattice animals, p...
Κύριος συγγραφέας: | |
---|---|
Συγγραφή απο Οργανισμό/Αρχή: | |
Άλλοι συγγραφείς: | |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Berlin, Heidelberg :
Springer Berlin Heidelberg,
2006.
|
Σειρά: | Lecture Notes in Mathematics,
1879 |
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- Simple Random Walk
- The Self-Avoiding Walk
- The Lace Expansion for the Self-Avoiding Walk
- Diagrammatic Estimates for the Self-Avoiding Walk
- Convergence for the Self-Avoiding Walk
- Further Results for the Self-Avoiding Walk
- Lattice Trees
- The Lace Expansion for Lattice Trees
- Percolation
- The Expansion for Percolation
- Results for Percolation
- Oriented Percolation
- Expansions for Oriented Percolation
- The Contact Process
- Branching Random Walk
- Integrated Super-Brownian Excursion
- Super-Brownian Motion.