Transseries and Real Differential Algebra

Transseries are formal objects constructed from an infinitely large variable x and the reals using infinite summation, exponentiation and logarithm. They are suitable for modeling "strongly monotonic" or "tame" asymptotic solutions to differential equations and find their origin...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Hoeven, Joris van der (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2006.
Σειρά:Lecture Notes in Mathematics, 1888
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Περιγραφή
Περίληψη:Transseries are formal objects constructed from an infinitely large variable x and the reals using infinite summation, exponentiation and logarithm. They are suitable for modeling "strongly monotonic" or "tame" asymptotic solutions to differential equations and find their origin in at least three different areas of mathematics: analysis, model theory and computer algebra. They play a crucial role in Écalle's proof of Dulac's conjecture, which is closely related to Hilbert's 16th problem. The aim of the present book is to give a detailed and self-contained exposition of the theory of transseries, in the hope of making it more accessible to non-specialists.
Φυσική περιγραφή:XII, 260 p. 8 illus. online resource.
ISBN:9783540355915
ISSN:0075-8434 ;