Transseries and Real Differential Algebra

Transseries are formal objects constructed from an infinitely large variable x and the reals using infinite summation, exponentiation and logarithm. They are suitable for modeling "strongly monotonic" or "tame" asymptotic solutions to differential equations and find their origin...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Hoeven, Joris van der (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2006.
Σειρά:Lecture Notes in Mathematics, 1888
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02612nam a22005175i 4500
001 978-3-540-35591-5
003 DE-He213
005 20151123195617.0
007 cr nn 008mamaa
008 100301s2006 gw | s |||| 0|eng d
020 |a 9783540355915  |9 978-3-540-35591-5 
024 7 |a 10.1007/3-540-35590-1  |2 doi 
040 |d GrThAP 
050 4 |a QA564-609 
072 7 |a PBMW  |2 bicssc 
072 7 |a MAT012010  |2 bisacsh 
082 0 4 |a 516.35  |2 23 
100 1 |a Hoeven, Joris van der.  |e author. 
245 1 0 |a Transseries and Real Differential Algebra  |h [electronic resource] /  |c by Joris van der Hoeven. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2006. 
300 |a XII, 260 p. 8 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1888 
505 0 |a Orderings -- Grid-based series -- The Newton polygon method -- Transseries -- Operations on transseries -- Grid-based operators -- Linear differential equations -- Algebraic differential equations -- The intermediate value theorem. 
520 |a Transseries are formal objects constructed from an infinitely large variable x and the reals using infinite summation, exponentiation and logarithm. They are suitable for modeling "strongly monotonic" or "tame" asymptotic solutions to differential equations and find their origin in at least three different areas of mathematics: analysis, model theory and computer algebra. They play a crucial role in Écalle's proof of Dulac's conjecture, which is closely related to Hilbert's 16th problem. The aim of the present book is to give a detailed and self-contained exposition of the theory of transseries, in the hope of making it more accessible to non-specialists. 
650 0 |a Mathematics. 
650 0 |a Algebraic geometry. 
650 0 |a Difference equations. 
650 0 |a Functional equations. 
650 0 |a Dynamics. 
650 0 |a Ergodic theory. 
650 1 4 |a Mathematics. 
650 2 4 |a Algebraic Geometry. 
650 2 4 |a Difference and Functional Equations. 
650 2 4 |a Dynamical Systems and Ergodic Theory. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540355908 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1888 
856 4 0 |u http://dx.doi.org/10.1007/3-540-35590-1  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (Springer-11649)